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Core Standards

The curriculum in this book aligns with the Common Core State Standards:
thecorestandards.org3

• High School: Algebra

◦ Creating Equations4

■ Create equations that describe numbers or relationships.
• HSA.CED.A.2: Create equations in two or more variables to

represent relationships between quantities; graph equations
on coordinate axes with labels and scales.(Section 2.3)

• High School: Functions

◦ Interpreting Functions5

■ Analyze functions using different representations.
• HSF.IF.C.7: Graph functions expressed symbolically and

show key features of the graph, by hand in simple cases and
using technology for more complicated cases. (Section 2.1,
Section 2.2)

• HSF.IF.C.7.e: Graph exponential and logarithmic functions,
showing intercepts and end behavior, and trigonometric func-
tions, showing period, midline, and amplitude. (Section 2.1,
Section 2.2)

◦ Building Functions6

■ Build a function that models a relationship between two quanti-
ties.
• HSF.BF.A.1: Write a function that describes a relationship

between two quantities. (Section 2.3)
■ Build new functions from existing functions.

• HSF.BF.B.3: Identify the effect on the graph of replacing
f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific
values of k (both positive and negative); find the value of
k given the graphs. Experiment with cases and illustrate
an explanation of the effects on the graph using technol-
ogy. Include recognizing even and odd functions from their
graphs and algebraic expressions for them. (Subsection 2.1.4,
Subsection 2.2.9)

3http://www.thecorestandards.org/
4https://www.thecorestandards.org/Math/Content/HSA/CED/
5https://www.thecorestandards.org/Math/Content/HSF/IF/
6https://www.thecorestandards.org/Math/Content/HSF/BF/
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◦ Trigonometric Functions7

■ Extend the domain of trigonometric functions using the unit
circle.
• HSF.TF.A.1: Understand radian measure of an angle as the

length of the arc on the unit circle subtended by the angle.
(Definition 1.2.18)

• HSF.TF.A.2: Explain how the unit circle in the coordinate
plane enables the extension of trigonometric functions to
all real numbers, interpreted as radian measures of angles
traversed counterclockwise around the unit circle. (Subsec-
tion 1.3.2)

• HSF.TF.A.3: Use special triangles to determine geometri-
cally the values of sine, cosine, tangent for π/3, π/4 and
π/6, and use the unit circle to express the values of sine,
cosine, and tangent for x, π + x, and 2π − x in terms of their
values for x, where x is any real number. (Subsection 1.4.2,
Subsection 1.5.3)

• HSF.TF.A.4: Use the unit circle to explain symmetry (odd
and even) and periodicity of trigonometric functions. Model
periodic phenomena with trigonometric functions. (Subsec-
tion 1.5.4, Subsection 1.5.7)

■ Model periodic phenomena with trigonometric functions.
• HSF.TF.B.5: Choose trigonometric functions to model pe-

riodic phenomena with specified amplitude, frequency, and
midline. (Subsection 2.1.4, Section 2.3)

• HSF.TF.B.6: Understand that restricting a trigonometric
function to a domain on which it is always increasing or
always decreasing allows its inverse to be constructed. (Sub-
section 2.4.1)

• HSF.TF.B.7: Use inverse functions to solve trigonometric
equations that arise in modeling contexts; evaluate the so-
lutions using technology, and interpret them in terms of
the context. (Exercise 2.1.5.46, Exercise Group 2.1.5.47–50,
Exercise Group 2.2.10.37–42, Exercise Group 2.2.10.43–52,
Example 2.4.18, Example 2.4.19, Example 2.4.17)

■ Prove and apply trigonometric identities.
• HSF.TF.C.8: Prove the Pythagorean identity sin2 θ+cos2 θ =

1 and use it to find sin θ, cos θ, or tan θ given sin θ, cos θ, or
tan θ and the quadrant of the angle. (Definition 1.5.20)

• HSF.TF.C.9: Prove the addition and subtraction formulas
for sine, cosine, and tangent and use them to solve problems.
(Proof 3.2.1.1, Example 3.2.10, Proof 3.2.3.1)

• High School: Geometry

◦ Similarity, Right Triangles, and Trigonometry Define trigonometric
ratios and solve problems involving right triangles.8

■ Define trigonometric ratios and solve problems involving right
triangles

7https://www.thecorestandards.org/Math/Content/HSF/TF/
8https://www.thecorestandards.org/Math/Content/HSG/SRT/
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• HSG.SRT.C.6: Understand that by similarity, side ratios in
right triangles are properties of the angles in the triangle,
leading to definitions of trigonometric ratios for acute angles.
(Definition 1.4.1)

• HSG.SRT.C.7: Explain and use the relationship between the
sine and cosine of complementary angles. (Definition 1.4.7,
Remark 1.4.9)

• HSG.SRT.C.8: Use trigonometric ratios and the Pythagorean
Theorem to solve right triangles in applied problems. (Sub-
section 1.4.6)

■ Apply trigonometry to general triangles
• HSG.SRT.D.9: Derive the formula Area = 1

2 ab sin(C) for
the area of a triangle by drawing an auxiliary line from a
vertex perpendicular to the opposite side.

• HSG.SRT.D.9: Prove the Laws of Sines and Cosines and
use them to solve problems.

• HSG.SRT.D.9: Understand and apply the Law of Sines and
the Law of Cosines to find unknown measurements in right
and non-right triangles (e.g., surveying problems, resultant
forces).

◦ Circles9

■ Find arc lengths and areas of sectors of circles
• HSG.C.B.5: Derive using similarity the fact that the length

of the arc intercepted by an angle is proportional to the
radius, and define the radian measure of the angle as the con-
stant of proportionality; derive the formula for the area of a
sector. (Definition 1.2.18, Theorem 1.2.25, Definition 1.2.28)

9https://www.thecorestandards.org/Math/Content/HSG/C/

https://www.thecorestandards.org/Math/Content/HSG/C/
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Chapter 1

Trigonometric Functions

1.1 Pacific Island Navigation
Pacific Islanders have been navigating across long distances in the Pacific for
centuries, even before the use of magnetic compasses or modern instruments.
They relied on observations of celestial bodies, such as stars and the sun, as
well as natural elements like ocean patterns, winds, bird behaviors, and other
environmental cues to determine their position relative to known landmarks
such as islands, reefs, and continents. Over time, much of this traditional
navigational knowledge was lost in many parts of the Pacific. However, some
islands, particularly in Micronesia and on Taumako Island in the Solomon
Islands, managed to preserve the art and science of traditional navigation.
These places continued to uphold the practice, teaching new generations to
build ocean-going canoes and develop navigational skills based on profound
knowledge of the natural world.

1.1.1 Micronesia
Navigators in Micronesia utilize the paafu mat or map (shown in Figure 1.1.1).
It is often misunderstood and misinterpreted as a Star “Compass” due to its
use of stars and constellations for direction finding. However, paafu serves a
different purpose and is not equivalent to the cardinal directionality marked
by compasses (North, South, East, and West). Instead, it is a learning and
teaching tool designed to teach the locational positions of islands, locales, or
canoes relative to other places. This is achieved by observing the rising and
setting points of stars and constellations, which act as markers for different
locations.

1
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Figure 1.1.1 Paafu mat or map - Photo courtesy of Kānehūnāmoku Voyaging
Academy

A constellation is a cluster of stars whose shapes and meanings reflect and
carry cultural significance. In modern society, a well-known cluster of stars in
the southern hemisphere, shaped like a cruciform, is commonly referred to as
the “Southern Cross.” However, for the Polowatese and other islanders from the
Central Carolines region in the western Pacific islands, this same constellation
resembles the triggerfish, and so it is named accordingly.

In the Central Carolines, the general location in the celestial sky where
stars appear to rise after sundown is referred to as “tan.” This term is often
mistakenly translated as “east” due to the modern association of stars (like
the sun) with “rising” in the east. However, it’s important to note that “tan”
means “rising” and not “eastward.”
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Figure 1.1.2 The paafu, or Micronesian Star Compass. Stars are identified
using the Polowat dialect of the Chuukese language as it is used by members of
the Weriyeng School of navigation.

Figure 1.1.2 orients the cardinal direction known as “east” at the top of the
page, and so the top half of this diagram is also identified as “tan” – where
stars appear to rise. The diagram illustrates the apparent path of stars across
the sky each night and day (though most stars are not visible during the day)
and throughout a year. In this system, the rising and presence of specific stars
mark months, and these same stars will eventually set at a point horizontally
opposite to where they rose. This point corresponds to the cardinal direction
known as “west,” which is referred to as “tolon” – the area where the stars “set”
or go down.

In the paafu “map” shown in Figure 1.1.2, a canoe is placed at the center,
and the star called Mailap (Altair) marks due east. The time and location
when Mailap rises are referred to as “Tan Mailap” (rising Mailap), while the
time and place it sets are referred to as “Tolon Mailap” (setting Mailap). The
map’s orientation places east, or the rising points of the navigation or paafu
stars, at the top of the circle, and west, or the setting points of these stars, at
the bottom of the circle. As a map, paafu uses the rising and setting points of
stars to mark places around a given locale, which is placed at the center of the
circle. Table 1.1.3 displays the star and constellation names, provided in both
Polowat and according to the International Astronomical Union, listed in the
order of their rising during the third week of March in Polowat.
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Table 1.1.3 Star and constellation names in Polowat

Polowat International Astronomical Union
Wenenwenenfuhmwaket Polaris (always above the horizon)
Tan Mwarikar [Mahrah-ker] Pleiades aka Seven Sisters
Tan Un [Oon] Aldebaran
Tan Uliul [Ooh-lee-ool] Orion’s Belt
Tan Harapwel [Ah-rah-pwol] Gamma Corvus
Tan Mailapenefang [My Lap in a Fang] Beta Ursa Minor in Big Dipper
Tan Up [Oop] Crux or Southern Cross at Rising
Machemeas [Matche-may-ess] Crux or S. Cross at 45◦ 1

Tan Welo [Well-Ah] Alpha Ursa Major in Big Dipper
Wenenwenenup [Wehneh wehnen Oop] Crux or S. Cross at Meridian or upright
Tan Tumur [Two More] Antares or Scorpio’s tail
Tan Maharuw [Maa-Haa-Roo] Shaula or Scorpio’s stinger
Tan Mol [Mohl] Vega
Tan Mailap [My Lap] Altair
Tan Paiefung [Pie Efung] Gamma Aquila
Tan Paior [Pie Or] Beta Aquila
Tan Ukinik [Icky Nick] Cassioepea

Paafu can also be used to identify the direction in which moving objects, such
as canoes, or creatures like birds, fish, and humans, are heading or coming from.
This version of paafu utilizes the Polowat dialect of the Chuukese language, as
used by members of the Weriyeng School of navigation.

1.1.2 Hawai‘i
With the aim of reviving wayfinding in Hawai‘i, Nainoa Thompson journeyed
to the island of Satawal in the Federated States of Micronesia to learn from
master navigator Mau Piailug, affectionately known as Papa Mau. Using this
knowledge, Thompson adopted the paafu method, leading to the creation of the
Hawaiian Star Compass, also referred to as the Kūkuluokalani (Figure 1.1.4).

In the star compass, featuring the figure of an ‘iwa or great frigatebird at its
center, Thompson divides the visual horizon into 32 equidistant points around
a circle, referred to as houses. Each house in the Hawaiian Star Compass
represents a specific space on the horizon (11.25◦) where celestial bodies such
as the sun, stars, moon, and planets rise and set. In the same way that we use
addresses to locate homes, each celestial body has its own address represented
by these houses.

1The “Tan” prefix is not used for this position, because it is no longer rising
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Lā

Lā
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Figure 1.1.4 Hawaiian Star Compass, also known as the Kūkuluokalani.
The four cardinal points align with particular houses. Stars rise from the

horizon called Hikina (“To Arrive”) or East and set on the horizon called
Komohana (“To Enter”) or West. If you face Komohana (West) with your back
towards Hikina (East), your right will point towards ‘Ākau (“Right”) or North,
and your left will point towards Hema (“Left”) or South. The Hawaiian Star
Compass is oriented with North at the top.

The star compass is divided into four quadrants, each named after winds in
Hawai‘i. Ko‘olau is the Northeast quadrant named for the trade winds; Ho‘olua
is the Northwest quadrant, Kona is the Southwest quadrant; and Malanai is
the Southeast quadrant.

Each house on the star compass is given a name. The corresponding houses
in the east and west share the same name. Starting from the east or west and
moving northwards and southwards, the first house on either side of Hikina
(East) and Komohana (West) is called Lā (Sun). It is followed by ‘Āina (Land),
Noio (Tern), Manu (Bird), Nālani (Heavens), Nā Leo (Voices), and Haka
(Empty). The 32 houses in the Hawaiian Star Compass correspond to the
points of the 32-wind compass rose (Table 1.1.5).
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Table 1.1.5 The houses of the Hawaiian Star Compass and the corre-
sponding points on the 32-wind compass rose.

Star Compass 32 Point Compass Star Compass 32 Point Compass

House Symbol Name House Symbol Name

Hikina E East Komohana W West
Lā Ko‘olau EbN East by North Lā Kona WbS West by South
‘Āina Ko‘olau ENE East-northeast ‘Āina Kona WSW West-southwest
Noio Ko‘olau NEbE Northeast by East Noio Kona SWbW Southwest by West
Manu Ko‘olau NE Northeast Manu Kona SW Southwest
Nālani Ko‘olau NEbN Northeast by North Nālani Kona SWbS Southwest by South
Nā Leo Ko‘olau NNE North-northeast Nā Leo Kona SSW South-southwest
Haka Ko‘olau NbE North by east Haka Kona SbW South by West
‘Ākau N North Hema S South
Haka Ho‘olua NbW North by West Haka Malanai SbE South by East
Nā Leo Ho‘olua NNW North-northwest Nā Leo Malanai SSE South-southeast
Nālani Ho‘olua NWbN Northwest by North Nālani Malanai SEbS Southeast by South
Manu Ho‘olua NW Northwest Manu Malanai SE Southeast
Noio Ho‘olua NWbW Northwest by West Noio Malanai SEbE Southeast by East
‘Āina Ho‘olua WNW West-northwest ‘Āina Malanai ESE East-southeast
Lā Ho‘olua WbN West by North Lā Malanai EbS East by South

Celestial bodies move along parallel paths across the sky from East to West,
rising and setting in the same house, remaining in its hemisphere. For example,
if a star arrives in the Ko‘olau (northeastern) quadrant in the star house ‘Āina,
it will arc overhead, staying in the northern hemisphere, and enter the horizon in
the same house it arrived in, ‘Āina, but in the Ho‘olua (northwestern) quadrant
(see Figure 1.1.6). Similarly, if a star arrives in the Malanai (southeastern)
quadrant in the house Lā, it will remain in the southern hemisphere as it arcs
overhead and enters the horizon in the house Lā in the Kona (southwestern)
quadrant.

Figure 1.1.6 In the celestial sphere, stars rise in the east, arc across the sky,
and set in the west. Each star will both rise and set in the same house.

The star compass also serves as a guide for determining direction based
on wind and ocean swells. As the wind and swells move, they intersect the
star compass diagonally. For example, if a wind blows from the house Noio
in the Ko‘olau (northeast) quadrant, it will blow in the direction of the Kona
(southwest) quadrant and eventually exit in the same house, Noio.

Observations play a key role in determining direction using the star compass.
At night, Thompson relies on approximately 220 stars, memorizing where they
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rise and set on the horizon to navigate. During the day, we can use the sun’s
position on the horizon to gauge direction, but this method is only effective
when the sun is near the horizon at sunrise and sunset. Alternatively, one
can memorize the wind and wave directions, checking for any changes between
sunrise and sunset to establish their current direction.

The canoe itself can serve as a compass, as shown in Figure 1.1.7. From
the navigator’s seat on either corner of the stern (back) of the deck, you can
observe features like the rising sun and mark its position on the Star Compass
located on the canoe. It’s essential to note that the locations of the houses
on this Star Compass are in relation to the canoe, not to a fixed map. For
instance, only when the canoe is pointed towards the north will Hikina (East)
be the house to the right. Depending on the canoe’s orientation, at other times,
Hikina may appear several houses further up the deck.

Figure 1.1.7 The deck of a canoe can be used as a compass to help crew and
navigators.

1.1.3 Marshall Islands
The Marshallese people use stick charts as navigational tools. These stick
charts are constructed using a lattice-like structure made from curved and
straight sticks, typically formed by tying together the midribs of coconut fronds.
The curved sticks represent the islands and how they bend and refract the
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ocean swells, while the straight sticks symbolize the major wave patterns in the
surrounding waters.

The shells placed on the sticks indicate the relative locations of islands
within the Marshall Islands archipelago. These shells serve as markers, helping
navigators remember the positions of specific islands along their voyages.

Each stick chart is unique to its creator, reflecting their individual knowledge
and experiences. The personalization of the stick charts allows navigators to
develop a deep understanding of the ocean currents, wave patterns, and island
locations in their specific region.

The stick charts serve as mental maps or navigational aids, allowing expe-
rienced navigators to visualize and recall the complex information while on
their journeys. Navigators would memorize the stick charts, internalizing the
knowledge embedded within them, enabling them to navigate the open ocean.

Figure 1.1.8 Marshallese stick chart.

1.1.4 Elsewhere in the Pacific
In addition to the star compass, many cultures across the Pacific use a wind
compass. Similar to the star compass, the wind compass is also a mental
construct.

Other Pacific Island cultures have also adapted the modern Hawaiian Star
Compass to their languages, as illustrated in Figure 1.1.9.
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gā

Reo
Ngā
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Kāina

Rā
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Āiga
Gogo

Man
u

Ta
li‘

ila
giLe

oA
ta

A
ta

Leo
Tali‘ilagi

Manu

Gogo
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Āiga

Lā
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Figure 1.1.9 Examples of Star Compasses across the Pacific.

1.1.5 Exercises
1. Who developed the Hawaiian Star Compass?

Answer. Nainoa Thompson
2. The Hawaiian Star Compass was based on the Micronesian Star Compass,

known as the paafu. Who shared the paafu with the Hawaiians?
Answer. Mau Piailug or Papa Mau

3. According to the Hawaiian Star Compass, what is the name for

(a) North

Answer. ‘Ākau

(b) East

Answer. Hikina

(c) South

Answer. Hema

(d) West

Answer. Komohana
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4. What is the Hawaiian name for winds in the

(a) Northeast quadrant

Answer. Ko‘olau

(b) Southeast quadrant

Answer. Malanai

(c) Southwest quadrant

Answer. Kona

(d) Northwest quadrant

Answer. Ho‘olua
Exercise Group. For each direction, identify the Hawaiian names of the
corresponding house and quadrant in the Hawaiian Star Compass

5. Northwest by North
Answer. Nālani Ho‘olua

6. East-northeast
Answer. ‘Āina Ko‘olau

7. North-northwest
Answer. Nā Leo Ho‘olua

8. Southeast
Answer. Manu Malanai

9. South by West
Answer. Haka Kona

10. East by South
Answer. Lā Malanai

11. Southwest by West
Answer. Noio Kona

12. Northeast by North
Answer. Nālani Ko‘olau

13. South-southeast
Answer. Nā Leo Malanai

14. West-southwest
Answer. ‘Āina Kona

Exercise Group. Identify the corresponding point on the 32-wind compass
for each house on the Hawaiian Star Compass

15. Nā Leo Kona
Answer. South-southwest

16. ‘Āina Malanai
Answer. East-southeast

17. ‘Āina Ho‘olua
Answer. West-northwest

18. Lā Ko‘olau
Answer. East by North

19. Manu Ko‘olau
Answer. Northeast

20. Haka Malanai
Answer. South by East

21. Nālani Kona
Answer. Southwest by
South

22. Haka Ho‘olua
Answer. North by West

23. Noio Ho‘olua
Answer. Northwest by West

24. Noio Ko‘olau
Answer. Northeast by East

25. The winter solstice in the southern hemisphere occurs around June 22. It
is the time when the sun is at its lowest elevation in the sky, resulting in
the shortest daylight of the year. During the winter solstice, the sun rises
from its northernmost position, ‘Āina Ko‘olau. In what house does the
sun set during the winter solstice in the southern hemisphere?
Answer. ‘Āina Ho‘olua

26. The winter solstice in the northern hemisphere occurs around December
22 when the sun rises from its southernmost position, ‘Āina Malanai. In
which house does the sun set during the winter solstice in the northern
hemisphere?
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Answer. ‘Āina Kona
27. Wind is coming from Nā Leo Kona. In what direction is the wind blowing?

Answer. Nā Leo Ko‘olau
28. Current is coming from Noio Ho‘olua. In what direction is the current

heading?
Answer. Noio Malanai
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1.2 Angles and Their Measure
One method people use to identify their position is by looking at the latitude.
These imaginary lines form circles around the Earth and run parallel to the
Equator. The latitude of a place is defined as the angle between a line drawn
from the center of the Earth to that point and the equatorial plane. For any
point in the Northern Hemisphere, a navigator can measure their latitude by
determining the angle that Hōkūpa‘a (also known as Kūmau, Wuli wulifasmughet,
Fuesemagut, North Star, or Polaris) makes with the horizon.

Horizon
Angle of Hōkūpa‘a

⋆⋆Hokupa‘a

During voyages, knowing the correct angles can make the difference between
reaching your destination or missing it. Navigators carefully observe angles on
the Hawaiian Star Compass to determine the entry and exit points of celestial
bodies in the sky, as well as the direction of wind and current. In this section,
we will explore the properties of angles and their measure.

Definition 1.2.1 A ray is a part of a line that begins at a point O and extends
in one direction.

RayO

♢

Definition 1.2.2 We can create an angle, θ, by rotating rays. First, we begin
with two rays lying on top of each other and beginning at O. We let one ray be
fixed and will rotate the second ray about the point O. The ray that is fixed is
called the initial side and the ray that is rotated is called the terminal side.

Initial Side

Terminal Side

O

θ

♢

Remark 1.2.3 Angles are often measured using Greek letters. The commonly
used Greek letters include θ, ϕ, α, β, and γ.

1.2.1 Degree
The measure of an angle is the amount of rotation from the initial side to
the terminal side. One unit of measuring angles is the degree. One degree,
denoted by 1◦, is 1

360 of a complete circular revolution, so one full revolution is
360◦.
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The Hawaiian Star Compass consists of 32 houses, each spanning 11.25◦

( 360◦

32 ). Assuming due East corresponds to 0◦ and the center of the House of
Hikina points due East, the border between Hikina and Lā Ko‘olau will be half
the angle of the house, 5.625◦ ( 11.25◦

2 ). The angles for the other boundaries on
the Hawaiian Star Compass are shown in Figure 1.2.4.
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Lā
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Figure 1.2.4 The Star Compass with the angles indicating the boundaries for
each House.

Although decimals are commonly used to represent fractional parts of a
degree, traditionally, degrees were represented in minutes and seconds. One
minute or arc minute, denoted as 1′, is equal to 1

60 degrees, and one second
or arc second, denoted as 1′′, is equal to 1

60 minutes.

Remark 1.2.5 Conversion Between Degree, Minutes, and Seconds.

1◦ = 60′ 1′ =
(

1
60

)◦

1′′ =
(

1
3600

)◦

1◦ = 3600′′ 1′ = 60′′ 1′′ =
(

1
60

)′

Example 1.2.6 Convert angle from decimal degrees to degrees/
minutes/seconds. In the Star Compass (Figure 1.2.4), the angle between
the houses Manu Ho‘olua (northwest) and Noio Ho‘olua (northwest by west)
measures 140.625◦. Represent this angle in degrees, minutes, and seconds.
Solution. First we will convert 0.625◦ to minutes using the conversion 1◦ =
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60′,

0.625◦ = 0.625◦ · 60′

1◦ = 37.5′

Since 1′ = 60′′, we can convert 0.5′ to seconds: 0.5′ = 0.5′ · 60′′

1′ = 30′′.
So 140.625◦ = 140◦37′30′′. □

Example 1.2.7 Convert angle from degrees/minutes/seconds to deci-
mal degrees. Convert 263◦24′45′′ to decimal degrees.
Solution. We will first convert 24′ and 45′′ to degrees.

24′ = 24 · 1′ = 24 ·
(

1
60

)◦

= 0.4◦

and
45′′ = 45 · 1′′ = 45 ·

(
1

3600

)◦

= 0.0125◦

So 263◦24′45′′ = 263◦ + 24′ + 45′′ = 263◦ + 0.4◦ + 0.0125 = 263.4125◦ □

Definition 1.2.8 If an angle is drawn on the xy-plane, and the vertex is at
the origin, and the initial side is on the positive x-axis, then that angle is said
to be in standard position. If the angle is measured in a counterclockwise
rotation, the angle is said to be a positive angle, and if the angle is measured
in a clockwise rotation, the angle is said to be a negative angle.

x

y

positive angle

x

y

negative angle

♢

Definition 1.2.9 When an angle is in standard position, the terminal side
will either lie in a quadrant or it will lie on the x-axis or y-axis. An angle is
called a quadrantal angle if the terminal side lies on x-axis or y-axis. The
two axes divide the plane into four quadrants. In the Cartesian plane, the four
quadrants are Quadrant I, II, III, and IV. The corresponding quadrants of Star
Compass are Ko‘olau (NE), Ho‘olua (NW), Kona (SE), and Malanai (SW).
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x

y

I
Ko‘olau

II
Ho‘olua

III
Kona

IV
Malanai

♢

Definition 1.2.10 Coterminal angles are angles in standard position that
have the same initial side and the same terminal side. Any angle has infinitely
many coterminal angles because each time we add or subtract 360◦ from it, the
resulting angle has the same terminal side. ♢

Example 1.2.11 Coterminal angles. 90◦ and 450◦ are coterminal angles
since 450◦ − 360◦ = 90◦. □

To determine the quadrant in which an angle lies, add or subtract one
revolution (360◦) until you obtain a coterminal angle between 0◦ and 360◦. The
quadrant where the terminal side lies is the quadrant of the angle. Quadrantal
angles do not lie in any quadrant.

Example 1.2.12 Determine the corresponding house and quadrant in
the Star Compass. Determine the quadrant in which each angle lies and name
the corresponding House and quadrant in the Star Compass (Figure 1.2.4).

(a) 140◦

Solution. Since 90◦ < 140◦ < 180◦, 140◦ lies in Quadrant II, or Manu
Ho‘olua.

(b) −770◦

Solution. Since −770◦ < 0◦, we first add 3 × 360 to −770◦ to obtain
an angle 0◦ and 360◦,

−770◦ + 3 × 360◦ = 310◦

So 310◦ and −770◦ are coterminal. Since 270◦ < 310◦ < 360◦, 310◦ lies
in Quadrant IV, or Manu Malanai.

(c) 923◦

Solution. Since 923◦ > 360◦ we begin by subtracting 2 × 360◦

923◦ − 2 × 360◦ = 203◦

So 203◦ and 923◦ are coterminal. Since 180◦ < 203◦ < 270◦, 923◦ lies in
Quadrant III or ‘Āina Kona.

□
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Example 1.2.13 Determine the corresponding quadrant given its
location in the Star Compass. What is the corresponding quadrant for
Nālani Kona?
Solution. Locating Nālani Kona in the Star Compass, we see it is in Quadrant
III. □

Definition 1.2.14 A central angle is a positive angle formed at the center of
a circle by two radii.

O

Central
Angle

♢

Remark 1.2.15 Heading and Azimuth. In navigation, the direction a
wa‘a is pointed towards is referred to as the heading. Unlike in trigonometry,
where it is conventional to define an angle in standard position, i.e., 0◦ lies
along the positive x-axis, in navigation, North corresponds to a heading of 0◦

and positive angles are measured in a clockwise rotation (see Figure 1.2.16).

North

0◦ or 360◦
NE

45◦

East90◦

SE
90◦

South

180◦SW

225◦

West 270◦

NW

315◦

Figure 1.2.16 The cardinal directions for headings are as follows: 0◦ (or 360◦)
points north, 90◦ points east, 180◦ points south, and 270◦ points west.

The Star Compass can now be presented in terms of heading angles, as
demonstrated in Figure 1.2.17.
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Figure 1.2.17 The Star Compass is presented in terms of heading, with the
angles indicating the boundaries for each House.

In astronomy and navigation, the position of a celestial body as it rises
or sets on the horizon can be measured using the azimuth, which indicates
the direction of celestial objects relative to an observer’s position. Similar to
heading, azimuth starts from the north and increases clockwise.

In navigation, “heading” typically denotes the direction an object like a canoe
or wind is pointed, whereas “azimuth” pertains to the angular measurement
of celestial bodies on the horizontal plane. Both “heading” and “azimuth”
measure angles in degrees, beginning from north and progressing clockwise.
Unless specified otherwise to use the heading or azimuth angle (in which case,
refer to Figure 1.2.17), this book will use Figure 1.2.4 for the angles of the Star
Compass.

1.2.2 Radian
Another way to measure an angle is with radians, which measure the the arc of
a circle that is formed from an angle.

Definition 1.2.18 Definition of a Radian. The radian measure of a
central angle in a circle is the ratio of the length of the arc on a circle subtended
by the angle to the radius. If r is the radius of the circle, θ is the angle, and s
is the arc length, then we have the following

θ = s

r
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A radian is abbreviated by rad.

x

y

s

r
θ

♢
The measure of a central angle obtained when the length of the arc is also

equal to the radius, r, is called one radian (1 rad). Similarly, if θ = 2 rad, then
the arc length equals 2r.

x

y

r

r

θ=1 rad
x

y

r

r

r

θ=2 rad

The circumference of a circle is C = 2πr. This means that the circumference
is 2π ≈ 6.28 times the radius. Consequently, if we were to use a piece of string
with the length of the radius, we would need six pieces of string plus a fractional
piece of the string, as shown in Figure 1.2.19.
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x

y

r

r

r

r

r

r

0 radians,2π ≈ 6.28 radians

1 radian2 radians

3 radians

4 radians
5 radians

6 radians
fractional piece

Figure 1.2.19 One rotation of the unit circle is 2π ≈ 6.28 radians.
Remark 1.2.20 Relationships Between Degrees and Radians. If a circle
with radius 1 is drawn, it has 360◦, and the full arc length is the circumference,
which is 2π. Therefore,the relationship between degrees and radians is:

360◦ = 2π radian, or 180◦ = πradian

1 radian = 180◦

π

1◦ = π

180 radian

Remark 1.2.21 Converting Between Degrees and Radians.

1. To convert degree to radians, multiply by 2π radians
360◦ or π radian

180◦

2. To convert radians to degrees, multiply by 360◦

2πradians or 180◦

π radian
Example 1.2.22 Express 45◦ in radians.

Solution. 45◦ = 45◦
(

2π radians
360◦

)
= π

4 radians □

Example 1.2.23 Express 5π

6 in degrees.

Solution. 5π

6 rad = 5π

6 rad
(

360◦

2π rad

)
= 150◦ □

Using this method, we can obtain Table 1.2.24 of common angles used in
trigonometry and the corresponding radian and degree measures.
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Table 1.2.24 Commonly Used Angles in Trigonometry: Degrees and
Radians

Radians 0 π

6
π

4
π

3
π

2
2π

3
3π

4
5π

6 π

Degrees 0◦ 30◦ 45◦ 60◦ 90◦ 120◦ 135◦ 150◦ 180◦

Radians π
7π

6
5π

4
4π

3
3π

2
5π

3
7π

4
11π

6 2π

Degrees 180◦ 210◦ 225◦ 240◦ 270◦ 300◦ 315◦ 330◦ 360◦

1.2.3 Arc Length
Recall that the definition of a radian is the ratio of the arc length to the radius
of a circle, θ = s

r . By rearranging this formula, we can obtain a formula for the
arc length of a circle.

Theorem 1.2.25 In a circle of radius r, the arc length, s, subtended by a
central angle (in radians), θ, is

s = rθ

If θ is given in degrees, then s = 2πr ·
(

θ

360◦

)
.

Example 1.2.26 Find the length of an arc of a circle with radius 10 cm
subtended by an angle of 2 radians.
Solution. Using the arc formula we get s = 10cm · 2rad = 20cm. □

Example 1.2.27 Kiritimati, also known as Christmas Island, is an atoll in
the Republic of Kiribati. Kiritimati’s location west of the International Date
Line makes it one of the first places in the world to welcome the New Year,
while Hawai‘i is one of the last places. Although Kiritimati and Moloka‘i share
the same longitude at 157◦12′ west (meaning Moloka‘i is directly north of
Kiritimati), both islands are 24 hours apart. For example, if the time on O‘ahu
is 3:00 pm on Thursday, then at that same moment it is 3:00 pm on Friday in
Kiritimati. Find the distance between Kiritimati ( 1◦45′ north latitude) and
Moloka‘i (21◦08′ north latitude). Assume the radius of Earth is 3,960 miles
and that the central angle between the two islands is the difference in their
laititudes.
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O

N

S

Moloka‘i

21◦08′N

1◦45′N

157◦12′W

Kiritimati

r

r
θs

Solution. The measure of the central angle between the two islands is

θ = 21◦08′ − 1◦45′

= 19◦23′

= 19◦ + 23
60

◦

≈ 19.3833◦

To find the distance, we use Theorem 1.2.25 to find the arc length:

s = 2πr ·
(

θ

360◦

)
≈ 2π · (3, 960 miles)19.3833◦

360◦ ≈ 1, 340 miles

So the distance between Kiritimati and Moloka‘i is approximately 1,340
miles. □

1.2.4 Area of a Sector of a Circle
Definition 1.2.28 Area of a Sector. The area of the sector of a circle
of radius r formed by a central angle of θ is

A = θ

360◦ · π · r2, when θ is in degrees

A = 1
2r2θ, when θ is in radians

♢

Notice the ratio θ

360◦ is the proportion of the angle θ (in degrees) to one
complete circle. Additionally, the circumference of a circle is given by 2πr.
Therefore, the arc length is simply the proportion of the central angle to the
whole circle multiplied by the circumference of the circle.

s = arc length = (proportion of circle) · (circumference) =
(

θ

360◦

)
· (2πr)

Similarly, the area of a circle is given by πr2. So the area of sector is the
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proportion of the central angle to the whole circle multiplied by the area of the
circle.

A = area of sector = (proportion of circle) · (area of circle) =
(

θ

360◦

)
·
(
πr2)

Theorem 1.2.29 Given a circle of radius r formed by a central angle of θ,
then the arc length and area of the sector formed by θ can be expressed as the
proportion of the angle to the full circle multiplied by the circumference and
area of the circle, respectively.

s = (proportion of circle) · (circumference) =
(

θ

360◦

)
· (2πr)

and
A = (proportion of circle) · (area of circle) =

(
θ

360◦

)
·
(
πr2)

Example 1.2.30 When sailing, Hōkūle‘a cannot make headway by sailing
directly into the wind. It can only sail beyond 67◦ in either direction from the
wind (Figure 1.2.31). If Hōkūle‘a sails for 50 miles, what is the area of the
sector that cannot be sailed? Round your answer to the nearest square mile.

67◦67◦

Downwind

Upwind

Figure 1.2.31 Hōkūle‘a cannot sail within 67◦ into the direction of the wind.

Solution. The angle is θ = 2 · 67◦ = 134◦ and the radius is r = 50 miles. So
the area is given by

A = θ

360◦ π · r2 = 134
360π · 502 ≈ 2, 923 square miles

□
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1.2.5 Angular Velocity and Linear Speed
Consider an object moving along a circle as shown below. There are two ways
to describe the circular motion of this object: linear speed which measures the
distance traveled; and angular speed which measures the rate at which the
central angle changes.

s

r
θ

Definition 1.2.32 Linear Speed. Suppose an object moves along a circle
with radius r and θ (measured in radians) is the angle transversed in time t.
Let s be the distance the object traveled in time t. Then the linear speed, v,
of the object is given by

v = s

t

♢

Definition 1.2.33 Angular Speed. Suppose an object moves along a circle.
Let θ (measured in radians) be the angle transversed by the object in time t.
The angular speed, ω, of the object is given by

ω = θ

t

♢
Notice that we can rearrange the angular speed to get θ = ωt. Since s is an

arc length, we have s = rθ, and thus we can write the linear speed as

v = s

t
= rθ

t
= rωt

t
= rω

Definition 1.2.34 Linear Speed. Suppose an object moves along a circle
with radius r and an angular speed ω (measured in radians per unit time).
Then the linear speed, v, of the object is given by

v = rω

♢

Example 1.2.35 Une.
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One method a wa‘a uses to change direction is with the hoe uli, or the
steering paddle. When a sharp turn is needed for maneuvers such as tacking,
the steersperson will turn the handle of the hoe uli in a circular motion, as
a lever to scoop the paddle in the water and change the heading of a vessel.
This move called une (prounced oo-NAY although it is often mispronounced as
oo-NEE) literally translates to “lever.”

Figure 1.2.36 A wa‘a (canoe) can change directions by rotating the hoe uli
(steering sweep) in a process known as une.

If the steerperson is performing an une at a rate of 25 rotations per minute
and the radius of the circular movement is 2 feet, calculate:

(a) The angular speed measured in radians per minute.

Solution. We are given the angular speed is ω = 25 revolutions per
minute. To convert our angular speed to radians per minute, we use the
fact that one revolution is 2π radians to get

ω = 25 revolution
minute = 25 rev

minute · 2π
radians

revolution = 50π
radians
minute

Thus the hoe uli is moving at an angular speed of 50π radians per second.

(b) The linear speed of the hoe uli in miles per hour (round your answer to
two decimal places).
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Solution. Since the radius is r = 2 ft and the angular speed is 50π
radians per minute, we can use Definition 1.2.34 to calculate the linear
speed

v = rω = 2ft · 50π
rad
min · mile

5280ft · 60min
hr ≈ 3.57miles

hour
Thus the steersperson is moving the hoe uli at a linear speed of 3.57 mph.

□

1.2.6 Exercises

Exercise Group. Given an angle, θ, identify the house and quadrant on the
Hawaiian Star Compass.

1. θ = 336◦

Answer. ‘Āina
Malanai

2. θ = 240◦

Answer. Nālani
Kona

3. θ = 35◦

Answer. Noio
Ko‘olau

4. θ = 221◦

Answer. Manu
Kona

5. θ = 108◦

Answer. Nā
Leo Ho‘olua

6. θ = 190◦

Answer. Lā
Kona

7. θ = 323◦

Answer. Noio
Malanai

8. θ = 158◦

Answer. ‘Āina
Ho‘olua

9. θ = 172◦

Answer. Lā
Ho‘olua

Exercise Group. Convert the given angle θ to a decimal in degrees rounded
to two decimal places.

10. θ = 20◦50′30′′

Answer. 20.84◦
11. θ = 80◦25′16′′

Answer. 80.42◦
12. θ = 7◦22′38′′

Answer. 7.38◦

13. θ = 330◦14′12′′

Answer. 330.24◦
14. θ = 168◦22′26′′

Answer. 168.37◦
15. θ = 49◦27′12′′

Answer. 49.45◦

16. θ = 327◦38′58′′

Answer. 327.65◦
17. θ = 281◦48′50′′

Answer. 281.81◦
18. θ = 134◦53′47′′

Answer. 134.90◦

19. Sirius, the brightest star in the night sky, has been known by various
names in different cultures and languages around the world. In Tahiti, it is
called Taurere and is considered a zenith star as it passes directly overhead.
Taurere has a declination of −16◦42′58′′, representing its angular distance
south of the celestial equator. Express Taurere’s declination as a decimal
rounded to two decimal places.
Answer. 16.72◦

Exercise Group. Recall the Star Compass with the boundaries for each
House. Write the angles for the boundaries between the following houses in the
Ko‘olau quadrant in terms of degrees, minutes, and seconds.
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HIKINA

‘Ā
K

A
U

5.625◦

16.875◦

28.125◦
39.

375
◦

Lā

‘Āina

Noio
Man

uNā
lan

i

N
ā

Le
oH
ak

a

20. Between Hikina and Lā (5.625◦)
Answer. 5◦37′30′′

21. Between Lā and ‘Āina (16.875◦)
Answer. 16◦52′30′′

22. Between ‘Āina and Noio (28.175◦)
Answer. 28◦7′30′′

23. Between Noio and Manu (39.375◦)
Answer. 39◦22′30′′

Exercise Group. Convert the given angle θ to degrees/minutes/seconds
rounded to the nearest second and identify the house and quadrant on the
Hawaiian Star Compass.

24. θ = 258.39◦

Answer. θ = 258◦23′24′′

Haka Malanai

25. θ = 212.43◦

Answer. θ = 212◦25′33′′

Noio Kona
26. θ = 244.97◦

Answer. θ = 244◦57′59′′ Nā
Leo Kona

27. θ = 93.95◦

Answer. θ = 93◦57′6′′ Haka
Ho‘olua

28. θ = 135.625◦

Answer. θ = 135◦37′30′′

Manu Ho‘olua

29. θ = 162.52◦

Answer. θ = 162◦59′56′′

Manu Ho‘olua
30. θ = 328.21◦

Answer. θ = 328◦12′9′′

Noio Malanai

31. θ = 48.12◦

Answer. θ = 48◦7′17′′

Manu Ko‘olau
32. θ = 241.27◦

Answer. θ = 241◦16′15′′ Nā
Lani Kona

Exercise Group. Convert the given angle θ to radians and identify the house
and quadrant on the Hawaiian Star Compass. Keep your answers in terms of π.
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33. θ = 102◦

Answer. θ = 17π
30 Haka

Ho‘olua

34. θ = 96◦

Answer. θ = 8π
15 ‘Ākau

35. θ = 190◦

Answer. θ = 19π
18 Lā Kona

36. θ = 122◦

Answer. θ = 61π
90 Nālani

Ho‘olua
37. θ = 32◦

Answer. θ = 8π
45 Noio

Ko‘olau

38. θ = 236◦

Answer. θ = 59π
45 Nālani

Kona
39. θ = 82◦

Answer. θ = 41π
90 Haka

Ko‘olau

40. θ = 228◦

Answer. θ = 19π
15 Manu

Kona
41. θ = 332◦

Answer. θ = 83π
45 ‘Āina

Ko‘olau

Exercise Group. Draw the angle in standard position.
42. 60◦

Answer.

x

y

43. 135◦

Answer.

x

y

44. −30◦

Answer.

x

y

45. 495◦

Answer.

x

y

46. −240◦

Answer.

x

y

47. 800◦

Answer.

x

y

48. π
4
Answer.

x

y

49. 5π
6

Answer.

x

y

50. − π
3

Answer.

x

y

51. 10π
3

Answer.

x

y

52. 11π
6

Answer.

x

y

53. − 2π
3

Answer.

x

y
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Exercise Group. Convert the given angle from degrees to radians. Round
your answer to two decimal places.

54. 27◦

Answer. 0.47
55. 63◦

Answer. 1.10
56. −39◦

Answer. −0.68
57. 200◦

Answer. 3.49
58. 415◦

Answer. 7.24
59. 105◦

Answer. 1.83

Exercise Group. Convert the given angle from radians to degrees. Round
your answer to two decimal places.

60. 3π
5

Answer. 108◦
61. 8π

3
Answer. 480◦

62. − 4π
7

Answer. −102.86◦

63. 15π
4

Answer. 675◦

64. −1.5
Answer. −85.94◦

65. 3
Answer. 171.89◦

Exercise Group. Determine whether the two given angles in standard
position are coterminal.

66. 50◦, 410◦

Answer. Yes
67. −60◦,

330◦

Answer. Yes

68. 30◦, 1110◦

Answer. No
69. −210◦,

150◦

Answer. Yes
70. −807◦,

93◦

Answer. No

71. −757◦,
683◦

Answer. Yes

Exercise Group. Find an angle between 0◦ and 360◦ that is coterminal with
the given angle

72. 405◦

Answer. 45◦
73. 600◦

Answer. 240◦
74. 1035◦

Answer. 315◦

75. −300◦

Answer. 60◦
76. 381◦

Answer. 21◦
77. −754◦

Answer. 326◦

Exercise Group. Given a circle with radius r, calculate (a) the length of the
arc subtended by a central angle θ; and (b) the area of a sector with central
angle θ. Round your answer to four decimal places.

78. r = 10 in, θ = 45◦

Answer.

(a) 7.8540 in;

(b) 39.2699 in2

79. r = 5 m, θ = 120◦

Answer.

(a) 2.0944 m;

(b) 26.1799 m2

80. r = 3 mi, θ = π
3 radians

Answer.

(a) 3.1416 mi;

(b) 4.7124 mi2

81. r = 8 cm, θ = 2 radians
Answer.

(a) 16 cm;

(b) 64 cm2

Exercise Group. At the start of this section, you learned that the latitude
of a place is the angle between a line drawn from the center of the earth to
that point and the equatorial plane. If the radius of the Earth is 3,959 miles,
calculate the arc length, s, along the surface of the earth for each value of θ:
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O

N

S

P

Q

Equatorθ s

82. θ = 1◦ of latitude (in miles, rounded to 2 decimals)
Answer. 69.10 miles

83. θ = 1′ of latitude (in miles, rounded to 2 decimals). A nautical
mile, frequently used in navigation, is slightly longer than a mile on
land. One nautical mile was historically defined to be the arc length
corresponding to one minute of latitude. Check your answer with the
value of one nautical mile.
Answer. 1.15 miles

84. θ = 1′′ of latitude (in feet, rounded to the nearest integer).
Answer. 101 feet

85. The oeoe, or Hawaiian bullroarer, is made by drilling holes into a kamani
seed or coconut shell, then threading a long string through the holes to
secure it. When the oeoe is swung by the string, a whistling sound is
produced, similar to the sound of the wind on the top of mountains. If
a girl is swinging an oeoe at the end of 3 foot long rope at a rate of 180
revolutions per minute, calculate

(a) The angular speed measured in radians per minute.

Answer. 360π radians/minute

(b) The linear speed of the shell in miles per hour (round to two decimal
places).

Answer. 38.56 miles/hour
86. Earth completes one rotation around the Sun approximately every 365.25

days. We will assume the orbit is a circle, and that the Earth is 92.9
million miles from the Sun.

(a) How far does the Earth travel in one day, expressed as millions of
miles?

Hint. First determine the angle or proportion of a rotation that
Earth travels in one day, then calculate the arc length of Earth’s
orbit.

Answer. 1.6 million miles
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(b) How for does the Earth travel in 30 days, expressed as millions of
miles?

Answer. 47.9 million miles

(c) How far does the Earth travel in one rotation around the sun, ex-
pressed as millions of miles?

Answer. 583.7 million miles

(d) What is the linear speed of Earth as it orbits the Sun? Express your
answer in miles per hour.

Answer. 66, 588 miles per hour
87. As the the moon orbits the Earth, different parts of its surface become

illuminated by the Sun which we call moon phases. The moon completes
one rotation about Earth in approximately 27.3 days. If we assume its
orbit is circular and the moon is 239,000 miles from Earth, calculate the
linear speed of the moon, expressed as miles per hour.
Answer. 2,292 miles per hour

88. At 17.7◦ S latitude, the city of Nadi, Fiji is 6, 071 km from the Earth’s
axis of rotation. In 24 hours, Nadi will have traveled one rotation around
Earth or 2π · (6, 071) km. The city of Port Vila, Vanuatu lies 967 km
directly to the west of Nadi, Fiji. As the Earth rotates, how many minutes
sooner will the people of Nadi see the Sun rise than the people in Port
Vila, rounded to one decimal?
Hint. The proportion of distance between the two cities to the distance
traveled in one rotation is the same as the proportion of the time it takes
to see the sun between the two cities to time it takes to complete one
rotation.
Answer. 36.5 minutes

89. In Example 1.2.30, we learned that wa‘a cannot sail directly into the wind.
For each of the following wa‘a and distance traveled, determine the area
of the sector that cannot be sailed? Recall that 1 house = 11.25◦. Round
your answer to the nearest square mile.

(a) Makali‘i sails for 25 miles and cannot sail within 4 houses from the
direction of the wind.

Answer. 491 square miles

(b) Alingano Maisu sails for 15 miles and cannot sail within 3 houses
from the direction of the wind.

Answer. 133 square miles
90. Navigating by the Sun: Using Solar Declination and Rising Sun

to Orient on a Canoe.The position of the rising or setting sun changes
throughout the year. Solar declination (denoted as δ) is the angle
between the direction where the Sun rises (or sets) and due east (or due
west) on the horizon. It represents how far north or south the Sun is from
the celestial equator, projected onto the Earth’s equatorial plane. Solar
declinations to the north are positive, while those to the south are negative.
At the Equinoxes (around March 20th and September 22nd), the solar
declination is 0◦ (δ = 0◦), as the Sun is directly above the equator. During
the December solstice, around December 22, the Sun rises from its most
southern position, 23.5 degrees south of due east (δ = −23.5◦), and during
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the June solstice, around June 22, the Sun rises from its most northern
position, 23.5 degrees north of due east (δ = 23.5◦).

A navigator can use their knowledge of the rising sun to help orient
themselves. For example, on May 22, the solar declination is δ = 20◦16′. If
the navigator identifies where the Sun rises on the equinox, she can measure
20◦16′ south to identify East and can then orient herself accordingly.

(a) What is the azimuth of the sun?

Answer. 69◦44′

(b) What house is the sun rising in?

Answer. ‘Āina Ko‘olau

(c) What house does the sun set in?

Hint. Celestial bodies rise and set in the same house but different
quadrants.

Answer. ‘Āina Ho‘olua

(d) If the canoe is sailing with the rising sun on the port side (left) and
the navigator measures the angle between the direction of the canoe
and the sun as being 90◦, what is the heading of the canoe?

Answer. 159◦44′

(e) What house is the canoe sailing in?

Answer. Nā Leo Malanai
91. Swells are one of the most consistent navigational tools used to keep on

a course because they can remain constant over time. On 27 May 2023,
while sailing on the vaka Paikea from Rarotonga to Apia, you finished
your shift and are ready to take a nap. Before you lay down, you take
note that the canoe has a heading of 310◦ and the swells are coming from
the southwest (Manu Kona) and hitting the canoe at 5◦ above directly
left of the canoe. When you wake, you noticed the swells are now hitting
the canoe from 25◦ to the left of your heading. You are aware that the
swells couldn’t have changed this fast and conclude that while you were
asleep, the canoe changed its heading. Assuming the swell was constant,
determine your new heading.
Hint.

(a) Start by drawing a diagram that represents the heading of the canoe
before the nap. Mark the initial heading as ◦>.

(b) Next, draw the direction of the swells with respect to the canoe on
the same diagram. The swells are coming from the southeast (Manu
Kona) and hitting the canoe at ◦> above straight from the left of
the canoe.

(c) Now, draw another diagram of the swells and the canoe, but this
time, represent the swells hitting the canoe from ◦> to the left of
straight in front (Nā Leo Ho‘olua).

(d) Observe that the swells couldn’t have changed direction so fast while
you were asleep. Thus, the change in the direction of the swells must
be due to the canoe changing its heading.
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(e) Use the relationship between the angle of the swell and the angle
between the swell and the canoe to determine the angle by which
the canoe’s heading changed.

(f) Finally, update the initial heading of 310 degrees with the angle of
change to find the new heading of the canoe after the nap.

Answer. 250◦

92. After spending 6 weeks in Samoa, vaka Paikea is making his way back
from Apia to Rarotonga. On July 14, 2023, the canoe is sailing with a
heading of 50◦, and the wind is coming to the canoe from 60◦ to the right
of the your heading. What is the heading and house from which the wind
is coming?
Answer. 110◦; ‘Āina Malanai
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1.3 Unit Circle
In this section, we will introduce the trigonometric functions using the Unit
Circle.

1.3.1 Unit Circle
Definition 1.3.1 Unit Circle. The unit circle is a circle whose radius is
1 and whose center is at the origin of a rectangular plane (or xy-plane). The
equation for the unit circle is

x2 + y2 = 1

♢
Let t be a real number. Recall from Definition 1.2.18 that a radian measure

of a central angle, t, is defined as the ratio of the arc length s to the radius r.
In other words, t = s

r . In the unit circle, the radius is r = 1, and the angle
in radians is equal to the arc length, t = s. We will let t be in radians. The
circumference of the unit circle is 2πr = 2π · 1 = 2π.

x

y

t

s = t

If t ≥ 0, we can imagine wrapping a line around the unit circle, marking off
a distance of t in a counterclockwise direction, and labeling that point P (x, y),
whic becomes the terminal point. If t < 0 then we would wrap in a clockwise
direction.
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x

y

P (x, y) t

t

If t > 2π or t < −2π, then the length is longer than the circumference of
the unit circle and you will need to travel around the unit circle more than once
before arrive at the point P (x, y). Therefore, we can conclude that regardless
of the value of t, we have a unique point P (x, y) that lies on the unit circle. We
call P (x, y) the point on the unit circle that corresponds to t.

1.3.2 Trigonometric Functions
The x- and y-coordinates for P (x, y) can then be used to define the six trigono-
metric functions of a real number t:

sine cosine tangent cosecant secant cotangent

which are abbreviated as sin, cos, tan, csc, sec, and cot, respectively.

Definition 1.3.2 Definition of Trigonometric Functions. Let t be any
real number and let P (x, y) be the terminal point on the unit circle associated
with t. Then

sin t = y cos t = x tan t = y

x
, (x ̸= 0)

csc t = 1
y

, (y ̸= 0) sec t = 1
x

, (x ̸= 0) cot t = x

y
, (y ̸= 0)
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x

y

1

cos t

sin t

P (x, y)

t

t

Notice that tan t and sec t re undefined when x = 0 and csc t and cot t are
undefined when y = 0. ♢

Example 1.3.3 Let t be the angle that corresponds to the point P (
√

3
2 , − 1

2 ).
Find the exact values of the six trigonometric functions corresponding to t:
sin t, cos t, tan t, csc t, sec t, cot t.
Solution. The point P (

√
3

2 , − 1
2 ) gives us x =

√
3

2 and y = − 1
2 . Then we have

sin θ = y = −1
2 , csc θ = 1

y
= 1

− 1
2

= −2,

cos θ = x =
√

3
2 , sec θ = 1

x
= 1

√
3

2

= 2√
3

= 2
√

3
3 ,

tan θ = y

x
=

− 1
2√
3

2

= − 1√
3

= −
√

3
3 , cot θ = x

y
=

√
3

2
− 1

2
= −

√
3.

□

1.3.3 Trigonometric Functions of an Angle
Definition 1.3.4 Trigonometric Functions of an Angle. If θ is an angle
with radian measure t, then the six trigonometric functions become

sin θ = y cos θ = x tan θ = y

x
, (x ̸= 0)

csc θ = 1
y

, (y ̸= 0) sec θ = 1
x

, (x ̸= 0) cot θ = x

y
, (y ̸= 0)

♢

Example 1.3.5 Find the exact values of the six trigonometric functions for

(a) θ = 0

Solution. When θ = 0 radians (0◦), the point on the circle is P (1, 0).
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x

y

P(1,0)

Then x = 1 and y = 0 gives us

sin 0 = sin 0◦ = 0, csc 0 = csc 0◦ = undefined,

cos 0 = cos 0◦ = 1, sec 0 = sec 0◦ = 1,

tan 0 = tan 0◦ = 0, cot 0 = cot 0◦ = undefined.

(b) θ = 3π
2

Solution. When θ = 3π
2 radians (270◦), the point on the circle is

P (0, −1).

x

y

P(0,-1)

Then x = 0 and y = −1 gives us

sin 3π

2 = sin 270◦ = −1, csc 3π

2 = csc 270◦ = −1,

cos 3π

2 = cos 270◦ = 0, sec 3π

2 = sec 270◦ = undefined,

tan 3π

2 = tan 270◦ = undefined, cot 3π

2 = cot 270◦ = 0

(c) θ = 5π

Solution. Since θ = 5π > 2π, our angle is greater than one full rotation
of a circle. We first subtract θ by one rotation, 2π, to get

5π − 2π− = 3π



CHAPTER 1. TRIGONOMETRIC FUNCTIONS 37

Once again, since we have completed more than one full rotation, we can
repeat the previous step:

3π − 2π = π

The values of the six trigonometric functions when θ = 5π are equal to
those when θ = π. Notice that 5π and π are coterminal angles, both
ending at the pointP (−1, 0).

x

y

P(-1,0)

Since x = −1 and y = 0 we have

sin 5π = 0, cos 5π = −1, tan 5π = 0,

csc 5π = undefined, sec 5π = −1, cot 5π = undefined.

□

Example 1.3.6 Finding the Exact Values of the Trigonometric Func-
tions for θ = 45◦. Find the exact values of the six trigonometric functions for
θ = 45◦.
Solution. We begin by drawing a right triangle with a base angle of 45◦ in
the unit circle.

x

y

1

x

y

P (x, y)

45◦

y = x

Since the first quadrant has 90◦, at θ = 45◦, the point P lies on the line
that bisects the first quadrant. This means the point P is on the line y = x.
Since P (x, y) also lies on the unit circle, whose equation is x2 + y2 = 1, we get

x2 + y2 = 1
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x2 + x2 = 1 (since y = x)
2x2 = 1

x2 = 1
2

x = 1√
2

y = 1√
2

(since y = x)

Then

sin 45◦ = 1√
2

=
√

2
2 csc 45◦ = 1

√
2

2

=
√

2

cos 45◦ = 1√
2

=
√

2
2 sec 45◦ = 1

√
2

2

=
√

2

tan 45◦ =
√

2
2√
2

2

= 1 cot 45◦ =
√

2
2√
2

2

= 1

□

Example 1.3.7 Finding the Exact Values of the Trigonometric Func-
tions for θ = 30◦. Find the exact values of the six trigonometric functions for
θ = 30◦.
Solution. First, we will draw a triangle in a circle with an angle of 30◦ and a
second triangle with an angle of −30◦ .

x

y

1

1

x

y

y

P (x, y)

30◦

This gives us two 30-60-90 triangles. Notice this now gives us one larger
triangle whose angles are all 60◦. Thus we have an equilateral triangle, with
each side of length 1.
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1

1

x

y

y

P (x, y)

30◦

30◦

60◦

60◦

1

1

1 = 2y

P (x, y)

60◦

60◦

60◦

We see that 1 = 2y so y = 1
2 . Then by the Pythagorean Theorem,

x2 + y2 = 12

x2 +
(

1
2

)2
= 1

x2 + 1
4 = 1

x2 = 3
4

x =
√

3
2

Giving us the following triangle

x

y

1

√
3

2

1
2

P (x, y) = P
( √

3
2 , 1

2

)

30◦

60◦

Then

sin 30◦ = 1
2 , csc 30◦ = 1

1
2

= 2,

cos 30◦ =
√

3
2 , sec 30◦ = 1

√
3

2

= 2√
3

= 2
√

3
3 ,
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tan 30◦ =
1
2√
3

2

= 1√
3

=
√

3
3 , cot 30◦ =

√
3

2
1
2

=
√

3.

□

Remark 1.3.8 Finding the Exact Values of the Trigonometric Func-
tions for θ = 90◦. Similarly, we can get the following for θ = 60◦.

x

y

1 1

1
2

1
2

√
3

2

P (x, y) = P
(

1
2 ,

√
3

2

)

60◦ 60◦

30◦ 30◦

We now summarize what we know about the six trigonometric functions for
special angles. Note the trigonometric functions for θ = π

2 and θ = π
3 are left

as exercises.
Table 1.3.9 Trigonometric functions for special angles

θ (deg) θ (rad) sin θ cos θ tan θ csc θ sec θ cot θ

0◦ 0 0 1 0 undef 1 undef

30◦ π

6
1
2

√
3

2

√
3

3 2 2
√

3
3

√
3

45◦ π

4

√
2

2

√
2

2 1
√

2
√

2 1

60◦ π

3

√
3

2
1
2

√
3 2

√
3

3 2
√

3
3

90◦ π

2 1 0 undef 1 undef 0

1.3.4 Symmetry on the Unit Circle
If the point P (x, y) lies on the unit circle, the following symmetric points also
lie on the unit circle:

1. Q(−x, y): Symmetry about the y-axis.

2. R(−x, −y): Symmetry about the origin.
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3. S(x, −y): Symmetry about the x-axis.

This symmetry within the unit circle resembles the pattern observed in
the Star Compass. When a star emerges in the eastern sky, it will eventually
descend and set in the corresponding house of the western sky. For instance,
if a star rises above the horizon in the Nālani house of the Ko‘olau quadrant
(northeast), it will journey across the sky and set in the equivalent house within
the Ho‘olua quadrant (northwest). This similarity aligns with the symmetry
between points P (x, y) and Q(−x, y). Additionally, if an ocean swell or wind
originates from the Nālani house in the Malanai quadrant (southeast), it will
pass the wa‘a and exit in the opposite direction toward the Ho‘olua quadrant
(northwest), still within the Nālani house. This mirrors the symmetry between
points S(x, −y) and Q(−x, y).

x

y

P (x, y)Q(−x, y)

R(−x, −y) S(x, −y)

H
ikina

K
om

oh
an

a

Hema

‘Ākau
NālaniNālani

Nālani Nālani

A fourth form of symmetry involves reflecting points across the diagonal
line y = x, where the x- and y-values are equal.

1. T (y, x): Symmetry about the line y = x. This is accomplished by
interchanging the x- and y-values.

x

y
P (x, y)

T (y, x)

Notice on the Unit Circle that the radius extending from the center at an angle
of 30◦ to the point T (x, y) =

(
1
2 ,

√
3

2

)
is symmetric about the line y = x, in

relation to the radius extending from the center at an angle of 60◦ to the point
P (x, y).
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x

y

P (x, y) =
(

1
2 ,

√
3

2

)

T (x, y) =
( √

3
2 , 1

2

)

30◦

60◦

Using symmetry about the x-axis, symmetry about the y-axis, and symmetry
about the origin, we can complete the unit circle, as long as we remember
that the x-values in Quadrants II and III are negative while the y-values in
Quadrants III and IV are negative.

x

y

π
4

π
2

3π
4

π

5π
4

3π
2

7π
4

2π

( √
2

2 ,
√

2
2

)(
−

√
2

2 ,
√

2
2

)

(
−

√
2

2 , −
√

2
2

) ( √
2

2 , −
√

2
2

)

(−1, 0) (1, 0)

(0, −1)

(0, 1)

x

y

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

2π

( √
3

2 , 1
2

)

(
1
2 ,

√
3

2

)

(
−

√
3

2 , 1
2

)

(
− 1

2 ,
√

3
2

)

(
−

√
3

2 , − 1
2
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(
− 1

2 , −
√

3
2

)

( √
3

2 , − 1
2

)

(
1
2 , −

√
3

2

)

(−1, 0) (1, 0)

(0, −1)

(0, 1)

Finally, we tie everything together and look at the entire Unit Circle. At
first glance it may seem intimidating, however, similar to the Star Compass,
there is a lot of symmetry (x-axis, y-axis, origin, about the line y = x) and it
can help by focusing on one quadrant, and use symmetry to fill out the rest of
the circle.
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Figure 1.3.10 The Unit Circle for common angles in radians and degrees.

1.3.5 Trigonometric Functions on a Circle with Radius r

Until now, computing the exact values of trigonometric functions of an angle
θ required us to locate the corresponding point P (x, y) on the unit circle.
However, we can use any circle with center at the origin, that is, any circle of
the form x2 + y2 = r2, where r > 0 is the radius. Note that if r = 1, then it is
the unit circle.
Theorem 1.3.11 For an angle θ in standard position, let P (x, y) be the point
on the terminal side of θ that is also on the circle x2 + y2 = r2. Then

sin θ = y

r
cos θ = x

r
tan θ = y

x
, (x ̸= 0)

csc θ = r

y
, (y ̸= 0) sec θ = r

x
, (x ̸= 0) cot θ = x

y
, (y ̸= 0)

1.3.6 Exercises

Exercise Group. Verify algebraically that the point P is on the unit circle
(x2 + y2 = 1)

1. P
( 3

5 , − 4
5
)

Answer.
( 3

5
)2+(

− 4
5
)2 = 1

2. P
(

−
√

39
8 , − 5

8

)
Answer.

(
−

√
39
8

)2
+(

− 5
8
)2 = 1

3. P
(

−
√

55
8 , 3

8

)
Answer.

(
−

√
55
8

)2
+( 3

8
)2 = 1
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4. P
(

− 2
3 ,

√
5

3

)
Answer.

(
− 2

3
)2+( √

5
3

)2
= 1

5. P
(

3
4 ,

√
7

4

)
Answer.

( 3
4
)2+( √

7
4

)2
= 1

6. P
( √

21
5 , − 2

5

)
Answer.

( √
21
5

)2
+(

− 2
5
)2 = 1

Exercise Group. Let the point P be on the unit circle. Given the quadrant
that P lies in, determine the missing coordinate, a

7. III; P
(
− 2

3 , a
)

Answer. −
√

5
3

8. IV; P
( 5

8 , a
)

Answer. −
√

39
8

9. III; P
(
a, − 2

5
)

Answer. −
√

21
5

10. II; P
(
a, 4

9
)

Answer. −
√

65
9

Exercise Group. Given an angle θ that corresponds to the point P on the
unit circle, determine the coordinates of the point P (x, y).

11. θ = π
2

Answer. (0, 1)
12. θ = π

Answer. (−1, 0)
13. θ = 5π

3

Answer.
(

1
2 , −

√
3

2

)14. θ = 4π
3

Answer.
(

− 1
2 , −

√
3

2

)
15. θ = − π

4

Answer.
( √

2
2 , −

√
2

2

)16. θ = 5π
6

Answer.
(

−
√

3
2 , 1

2

)17. θ = 315◦

Answer.
( √

2
2 , −

√
2

2

)18. θ = 720◦

Answer. (1, 0)

19. θ = 60◦

Answer.
(

1
2 ,

√
3

2

)20. θ = −180◦

Answer. (−1, 0)
21. θ = 210◦

Answer.
(

−
√

3
2 , − 1

2

)22. θ = 120◦

Answer.
(

− 1
2 ,

√
3

2

)
Exercise Group. For each angle θ in Exercises 1.3.6.11–22, find the exact
values of the six trigonometric functions. If any are not defined, say “undefined.”

23. θ = π
2

Answer. sin π
2 =

1; cos π
2 = 0;

tan π
2 is

undefined;
csc π

2 = 1; sec π
2

is undefined;
cot π

2 = 0

24. θ = π

Answer. sin π =
0; cos π = −1;
tan π = 0; csc π
is undefined;
sec π = −1; cot π
is undefined

25. θ = 5π
3

Answer. sin 5π
3 =

−
√

3
2 ; cos 5π

3 = 1
2 ;

tan 5π
3 = −

√
3;

csc 5π
3 = − 2

√
3

3 ;
sec 5π

3 = 2;
cot 5π

3 = −
√

3
3

26. θ = 4π
3

Answer. sin 4π
3 =

−
√

3
2 ;

cos 4π
3 = − 1

2 ;
tan 4π

3 =
√

3;
csc 4π

3 = − 2
√

3
3 ;

sec 4π
3 = −2;

cot 4π
3 =

√
3

3

27. θ = − π
4

Answer. sin
(
− π

4
)

=
−

√
2

2 ;
cos

(
− π

4
)

=
√

2
2 ;

tan
(
− π

4
)

= −1;
csc

(
− π

4
)

= −
√

2;
sec

(
− π

4
)

=
√

2;
cot

(
− π

4
)

= −1

28. θ = 5π
6

Answer. sin 5π
6 =

1
2 ; cos 5π

6 = −
√

3
2 ;

tan 5π
6 = −

√
3

3 ;
csc 5π

6 = 2;
sec 5π

6 = − 2
√

3
3 ;

cot 5π
6 = −

√
3
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29. θ = 315◦

Answer. sin 315◦ =
−

√
2

2 ;
cos 315◦ =

√
2

2 ;
tan 315◦ = −1;
csc 315◦ = −

√
2;

sec 315◦ =
√

2;
cot 315◦ = −1

30. θ = 720◦

Answer. sin 720◦ =
0; cos 720◦ = 1;
tan 720◦ = 0;
csc 720◦ is
undefined;
sec 720◦ = 1;
cot 720◦ is
undefined

31. θ = 60◦

Answer. sin 60◦ =√
3

2 ; cos 60◦ = 1
2 ;

tan 60◦ =
√

3;
csc 60◦ = 2

√
3

3 ;
sec 60◦ = 2;
cot 60◦ =

√
3

3

32. θ = −180◦

Answer. sin(−180◦) =
0; cos(−180◦) =
−1;
tan(−180◦) = 0;
csc(−180◦) is
undefined;
sec(−180◦) =
−1; cot(−180◦)
is undefined

33. θ = 210◦

Answer. sin 210◦ =
− 1

2 ;
cos 210◦ = −

√
3

2 ;
tan 210◦ =

√
3

3 ;
csc 210◦ = −2;
sec 210◦ = − 2

√
3

3 ;
cot 210◦ =

√
3

34. θ = 120◦

Answer. sin 120◦ =√
3

2 ;
cos 120◦ = − 1

2 ;
tan 120◦ = −

√
3;

csc 120◦ = 2
√

3
3 ;

sec 120◦ = −2;
cot 120◦ = −

√
3

3

Exercise Group. Let θ be the angle that corresponds to the point P .
Exercises 1.3.6.1–6 verified P is on the unit circle. Find the exact values of the
six trigonometric functions of θ.

35. P
( 3

5 , − 4
5
)

Answer. sin θ =
− 4

5 ; cos θ = 3
5 ;

tan θ = − 4
3 ;

csc θ = − 5
4 ;

sec θ = 5
3 ;

cot θ = − 3
4

36. P
(

−
√

39
8 , − 5

8

)
Answer. sin θ =
− 5

8 ;
cos θ = −

√
39
8 ;

tan θ = 5
√

39
39 ;

csc θ = − 8
5 ;

sec θ = − 8
√

39
39 ;

cot θ =
√

39
5

37. P
(

−
√

55
8 , 3

8

)
Answer. sin θ =
3
8 ; cos θ = −

√
55
8 ;

tan θ = − 3
√

55
55 ;

csc θ = 8
3 ;

sec θ = − 8
√

55
55 ;

cot θ = −
√

55
3

38. P
(

− 2
3 ,

√
5

3

)
Answer. sin θ =√

5
3 ; cos θ = − 2

3 ;
tan θ = −

√
5

2 ;
csc θ = 3

√
5

5 ;
sec θ = − 3

2 ;
cot θ = − 2

√
5

5

39. P
(

3
4 ,

√
7

4

)
Answer. sin θ =√

7
4 ; cos θ = 3

4 ;
tan θ =

√
7

3 ;
csc θ = 4

√
7

7 ;
sec θ = 4

3 ;
cot θ = 3

√
7

7

40. P
( √

21
5 , − 2

5

)
Answer. sin θ =
− 2

5 ; cos θ =
√

21
5 ;

tan θ = − 2
√

21
21 ;

csc θ = − 5
2 ;

sec θ = 5
√

21
21 ;

cot θ = −
√

21
2

Exercise Group. Find the exact value of each expression.
41. sin 30◦ + sin 150◦

Answer. 1
42. cos 30◦ + cos 150◦

Answer. 0
43. sin 60◦ + sin 120◦ + sin 240◦ + sin 300◦

Answer. 0
44. cos 60◦ + cos 120◦ + cos 240◦ + cos 300◦

Answer. 0
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45. tan 45◦ + tan 135◦

Answer. 0
46. tan 135◦ + tan 225◦

Answer. 0
47. tan 225◦ + tan 315◦

Answer. 0
48. tan 45◦ + tan 225◦

Answer. 2
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1.4 Right Triangle Trigonometry

start

end

actual course

reference course

deviation
1 House

During a voyage, a navigator utilizes a reference course —a line connecting
the starting point and destination—to monitor their position. When the wa‘a
(canoe) encounters winds that veer it off course, the navigator mentally plots
their position relative to the reference course. To ensure the destination isn’t
missed, navigators must monitor their deviation from the intended course,
involving measurement of the angle of deviation from the reference course (in
units of houses) and determining the distance traveled. This section explores
the calculation of trigonometric functions using right triangles, enabling us to
assess how much the wa‘a has strayed from its intended reference course.

1.4.1 Trigonometric Ratios
Definition 1.4.1 Trigonometric Ratios. Consider a right triangle with θ
as one of its acute angles. The trigonometric ratios are defined as follows:

adjacent

hypoten
use

op
po

sit
e

θ

sin θ = opposite
hypotenuse cos θ = adjacent

hypotenuse tan θ = opposite
adjacent

csc θ = hypotenuse
opposite sec θ = hypotenuse

adjacent cot θ = adjacent
opposite

A common mnemonic for remembering these relationships is SOHCAHTOA,
formed from the first letters of “S ine is Opposite over Hypotenuse, Cosine is
Adjacent over Hypotenuse, Tangent is Opposite over Adjacent.” ♢

Based on the definition of the six trigonometric functions, we have the
following trigonometric identities.

Definition 1.4.2 Reciprocal Identities.

sin θ = 1
csc θ

cos θ = 1
sec θ

tan θ = 1
cot θ

csc θ = 1
sin θ

sec θ = 1
cos θ

cot θ = 1
tan θ

♢
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Definition 1.4.3 Quotient Identities.

tan θ = sin θ

cos θ
cot θ = cos θ

sin θ

♢

Example 1.4.4 Find the exact values of the six trigonometric ratios of the
angle θ in the given triangle.

4

5 3

θ

Solution. By the definition of the trigonometric ratios, we have

sin θ = 3
5 cos θ = 4

5 tan θ = 3
4

csc θ = 5
3 sec θ = 5

4 cot θ = 4
3

□

Example 1.4.5 Find the exact values of the six trigonometric ratios of the
angle θ in the given triangle.

5

2

θ

Solution. Notice that θ is in a different position. Here, the adjacent side is 3
and the opposite side is 5. If we let h denote the hypotenuse, then we can use
the Pythagorean Theorem to get

h =
√

52 + 22 =
√

29

Then by the definition of the trigonometric ratios, we have

sin θ = 5√
29

= 5
√

29
29 cos θ = 2√

29
= 2

√
29

29 tan θ = 5
2

csc θ =
√

29
5 sec θ =

√
29
2 cot θ = 2

5

□
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1.4.2 Special Triangles
The angles 30◦, 45◦, 60◦ ( π

6 , π
4 , π

3 ) give special values for trigonometric functions.
The following figures are used to calculate trigonometric values.

1

1

√
2

45◦

45◦

1

1
2

1
2

1√
3

2

60◦ 60◦

30◦ 30◦

The trigonometric values for the special angles 0, 30◦, 45◦, 60◦, 90◦ (
0, π

6 , π
4 , π

3 , π
2

)
are given in Table 1.4.6.

Table 1.4.6 Values of the trigonometric functions in Quadrant I

θ θ sin θ cos θ tan θ

(degrees) (radians)

0◦ 0 0 1 0

30◦ π

6
1
2

√
3

2

√
3

3

45◦ π

4

√
2

2

√
2

2 1

60◦ π

3

√
3

2
1
2

√
3

90◦ π

2 1 0 undefined

1.4.3 Cofunctions
The symmetry between sin θ and cos θ becomes evident when reversing the order
of sine and cosine values from 90◦ to 0◦. This symmetry yields sin 0◦ = cos 90◦,
sin 30◦ = cos 60◦, sin 45◦ = cos 45◦, sin 60◦ = cos 30◦, and sin 90◦ = cos 0◦.

This pattern between sine and cosine is no coincidence; it emerges because
the three angles in a triangle add up to 180◦ or π radians. When considering
a right triangle, the remaining two angles combine to form 90◦ or π

2 radians,
making them complementary angles.
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b

c
a

α

β

Consider the right triangle in the figure above, where angles α and β are
complementary angles. Side ais opposite of angle α, and side b is opposite of
angle β. Notice that we can also describe side b as adjacent to angle α and side
a as adjacent to angle β. Therefore,

sin α = opposite
hypotenuse = a

c
and cos β = adjacent

hypotenuse = a

c

Thus we can conclude that

sin α = a

c
= cos β

Sine and cosine are called cofunctions because of this relationship be-
tween these functions and their complementary angles. We can obtain similar
relationships for all trigonometric functions:

sin α = a

c
= cos β cos α = b

c
= sin β tan α = a

b
= cot β

csc α = c

a
= sec β sec α = c

b
= csc β cot α = b

a
= tan β

Since α and β are complementary angles, α + β = 90◦. Rearranging, we get
β = 90◦ − α. Substituting this into our cofunctions and replacing α with θ, we
get our cofunction identities.

Definition 1.4.7 Cofunction Identities. The cofunction identities in
degrees are

sin θ = cos(90◦ − θ) cos θ = sin(90◦ − θ) tan θ = cot(90◦ − θ)
csc θ = sec(90◦ − θ) sec θ = csc(90◦ − θ) cot θ = tan(90◦ − θ)

The cofunction identities in radians are

sin θ = cos
(π

2 − θ
)

cos θ = sin
(π

2 − θ
)

tan θ = cot
(π

2 − θ
)

csc θ = sec
(π

2 − θ
)

sec θ = csc
(π

2 − θ
)

cot θ = tan
(π

2 − θ
)

♢

Example 1.4.8 The Cofunction Identities explains the symmetry in Table 1.4.6
.

sin 0◦ = cos(90◦ − 0◦) = cos 90◦ sin 60◦ = cos(90◦ − 60◦) = cos 30◦

sin 30◦ = cos(90◦ − 30◦) = cos 60◦ sin 90◦ = cos(90◦ − 90◦) = cos 0◦

sin 45◦ = cos(90◦ − 45◦) = cos 45◦

□
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Remark 1.4.9 Patterns in the Trigonometric Table. Learning the values
of the trigonometric functions in this table can increase your confidence and
efficiency in trigonometry. To help remember the values of sine and cosine, we
utilize cofunctions and also write them in the form

√
·/2

θ θ sin θ cos θ

0 0◦ √
0/2

√
4/2

π/6 30◦ √
1/2

√
3/2

π/4 45◦ √
2/2

√
2/2

π/3 60◦ √
3/2

√
1/2

π/2 90◦ √
4/2

√
0/2

which simplifies to the values in Table 1.4.6.

1.4.4 Using a Calculator
Sometimes you may encounter an angle other than the special angles described
above. In this case, you will have to use a calculator.

First, be sure that your angle is either in degrees or radians, depending on
the problem, refer to your calculator’s manual for instructions. Most calculators
will have a special button for the sine, cosine, and tangent functions. Depending
on your calculator, you may see the following keys for

Function Calculator Key

sine SIN
cosine COS
tangent TAN

To calculate cosecant, secant, and cotangent, you will need to use the identity

csc θ = 1
sin θ

, sec θ = 1
cos θ

, cot θ = 1
tan θ

Answers produced by calculators are estimates and you should pay close
attention to see if the question is asking for the exact solution or a decimal
approximation. For example, if you need to calculate sin 45◦ =

√
2

2 , the
calculator may give the answer as sin 45◦ ≈ 0.70710678, which is a decimal
approximation since the actual solution goes on forever. Unless stated otherwise,
answers in the book should be exact, e.g.

√
2

2 and not 0.70710678.

Example 1.4.10 Use a calculator to evaluate

(a) sin 22◦

Solution. Before proceeding, we confirm that our calculator is set to
either degree or radian mode. Additionally, for the sake of simplicity, we
will round our answers to four decimal places.
Input: SIN (22); Output: 0.3746
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(b) cos 5◦

Solution. Input: COS (5); Output: 0.9962

(c) cot 53◦

Solution. Since most calculators do not have a key for cotangent, we
Input: (1/ TAN (53)); Output: 1

1.3270 ≈ 0.7536

(d) cos 5 rad

Solution. Since this problem uses radians, we must change the mode
on our calculator then Input: COS (5); Output: 0.2837.

□

Remark 1.4.11 Observe that cos 5◦ ̸= cos 5 rad. This emphasizes the signifi-
cance of verifying whether your calculator is in degree or radian mode.

1.4.5 Solving Right Triangles

b

c
a

α

β

Consider the following right triangle where side a is opposite angle α, side b is
opposite angle β, and side c is the hypotenuse. Since α and β are complementary
angles, we have

α + β = 90◦

Additionally, by the Pythagorean Theorem, we have

a2 + b2 = c2

Definition 1.4.12 To solve a triangle is the process of determining the values
for all three lengths of its sides and the measures of all three angles, based on
provided information about the triangle. ♢

Remark 1.4.13 Solving Right Triangles. In solving a right triangle, the
following relationships are useful:

α + β = 90◦, a2 + b2 = c2

Example 1.4.14 Solve the right triangle. Round your answer to two decimal
places.
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16

c
a

50◦

β

Solution. Given that this is a right triangle, we already know one angle is
90◦, and we have an additional angle of50◦ along with an adjacent side length
of 16. To solve this triangle, we need to determine the values of sides a, c, and
β. We begin by finding the measure of angle β. Since 50◦ + β = 90◦ we have

β = 90◦ − 50◦ = 40◦

Next, we will solve for side a. Using the angle 50◦, where the adjacent side
is 16 and side a is the side opposite to the angle, we can apply the tangent
function, which relates the opposite and adjacent sides:

tan 50◦ = a

16

Multiplying both sides by 16 we get

a = 16 · tan 50◦ ≈ 19.07

Using the Pythagorean Theorem, we get

c2 = 162 + 19.072 ≈ 619.66

Thus
c ≈

√
619.66 ≈ 24.89

□

1.4.6 Solving Applied Problems
Example 1.4.15 Deviation. We are now ready to calculate the deviation
example proposed at the start of this section. In an average day of sailing, a
wa‘a sails for 120 nautical miles (NM). If Hikianalia is supposed to sail in the
direction of Hikina (East), but currents have deviated her course by one house
so she actually sailed in the house Lā, how far off the course has Hikianalia
deviated?
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start

end

actual course

reference course

deviation
1 House

Solution. From the Star Compass (Figure 1.1.4), the house Lā is one house
(11.25◦) from Hikina. If we let y denote the distance deviated from the reference
course, our right triangle becomes:

start

end

120 NM
y

11.25◦

Since we know the hypotenuse of the triangle and want to find the side
opposite of the angle, we will use the sine function:

sin 11.25◦ = opposite
hypotenuse = y

120 NM

multiplying both sides by 120, we get

y = 120 · sin 11.25◦ NM ≈ 23.4 NM

So Hikianalia has deviated 23.4 nautical miles north from the reference
course. □

Example 1.4.16 Solar panels. Solar panels harness the sun’s energy to
generate electricity, and for optimal energy output, they should be oriented
perpendicularly to the sun’s light. The sun’s angle of elevation varies based on
latitude, and in Hawai‘i, for instance, south-facing solar panels are recommended
to have a pitch of 21◦ to align with the sun’s rays. When installing a solar panel,
determining its pitch might pose challenges. Instead of measuring the angle
directly, an alternative approach involves measuring the height of the panel’s
top. What height should a south-facing solar panel, measuring 65 inches in
length, be installed at to achieve the desired angle of 21◦? Round your answer
to the nearest tenth of an inch.

Solar PanelH
ei

gh
t

Sun’s rays

Angle of
elevation of
Sun

Pitch angle

Solution. We begin by drawing the triangle.
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65 in

H
ei

gh
t

21◦

Since we know the desired angle of pitch of the solar panel and the length
of the panel, we can set up the following equation

sin 21◦ = opposite
hypotenuse = height

65 in
height = 65 in · sin 21◦ ≈ 23.3 in

Thus, when installing a solar panel in Hawai‘i, the top of the solar panel
should be positioned 23.3 inches above the bottom to optimize energy output.

□

1.4.7 Exercises

Exercise Group. Find the exact values of the six trigonometric functions of
the angle θ in each triangle.

1.

3

5 4

θ

Answer. sin θ = 4
5 ,

cos θ = 3
5 , tan θ = 4

3 ,
csc θ = 5

4 , sec θ = 5
3 , cot θ = 3

4

2.

5

√
74

7

θ

Answer. sin θ = 5
√

74
74 ,

cos θ = 7
√

74
74 , tan θ = 5

7 ,
csc θ =

√
74
5 , sec θ =

√
74
7 ,

cot θ = 7
5
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3.

4

6

θ

Answer. sin θ = 3
√

13
13 ,

cos θ = 2
√

13
13 , tan θ = 3

2 ,
csc θ =

√
13
3 , sec θ =

√
13
2 ,

cot θ = 2
3

4.

1312

θ

Answer. sin θ = 5
13 ,

cos θ = 12
13 , tan θ = 5

12 ,
csc θ = 13

5 , sec θ = 13
12 ,

cot θ = 12
5

5.

7

14

θ

Answer. sin θ = 2
√

5
5 ,

cos θ =
√

5
5 , tan θ = 2,

csc θ =
√

5
2 , sec θ =

√
5,

cot θ = 1
2

6.

4

4

θ

Answer. sin θ =
√

2
2 ,

cos θ =
√

2
2 , tan θ = 1,

csc θ =
√

2, sec θ =
√

2,
cot θ = 1
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7.

2

√
10

θ

Answer. sin θ =
√

15
5 ,

cos θ =
√

10
5 , tan θ =

√
6

2 ,
csc θ =

√
15
3 , sec θ =

√
10
2 ,

cot θ =
√

6
3

8.

2

3

θ

Answer. sin θ = 2
√

13
13 ,

cos θ = 3
√

13
13 , tan θ = 2

3 ,
csc θ =

√
13
2 , sec θ =

√
13
3 ,

cot θ = 3
2

Exercise Group. For each of the following problems, calculate

(a) cos α and sin β;

(b) tan α and cot β;

(c) csc α and sec β

9.

5

3
β

α

Answer.

(a) cos α = sin β = 5
√

34
34 ;

(b) tan α = cot β = 3
5 ;

(c) csc α = sec β =
√

34
3

10.

7

8

α

β

Answer.

(a) cos α = sin β = 7
8 ;

(b) tan α = cot β =
√

15
7 ;

(c) csc α = sec β = 8
√

15
15

Exercise Group. Use the Cofunction Identities to determine the value of θ

11. sin 28◦ = cos θ

Answer. θ =
62◦

12. cos 74◦ = sin θ

Answer. θ =
16◦

13. tan 52◦ = cot θ

Answer. θ =
62◦

14. sec 87◦ = csc θ

Answer. θ =
3◦

15. sin 3π
8 = cos θ

Answer. θ =
π
8

16. cot 2π
5 = tan θ

Answer. θ =
π
10

Exercise Group. In Example 1.4.15, we determined that when a wa‘a sails
for one day (120 nautical miles) and deviates from its course by 1 House, the
resulting deviation from the reference course is 23.4 NM. Now, calculate the
deviations (x) for the remaining 7 angles. Round your answer to the nearest
tenth of a nautical mile. Remember that one house corresponds to 11.25◦.
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x8

7 Houses

6 Houses

5 Houses

4 Houses

3 Houses

2 Houses

1 House

R
ef

er
en

ce
C

ou
rs

e,
12

0
N

M

8 Houses

x7

x6

x5

x4

x3

x2

x1

17. 2 Houses (11.25◦ × 2 = 22.5◦);
x2

Answer. x2 = 45.9 NM

18. 3 Houses
(11.25◦ × 3 = 33.75◦); x3

Answer. x3 = 66.7 NM
19. 4 Houses (11.25◦ × 4 = 45◦);

x4

Answer. x4 = 84.5 NM

20. 5 Houses
(11.25◦ × 5 = 56.25◦); x5

Answer. x5 = 99.8 NM
21. 6 Houses (11.25◦ × 6 = 67.5◦);

x6

Answer. x6 = 110.9 NM

22. 7 Houses
(11.25◦ × 7 = 78.75◦); x7

Answer. x7 = 117.7 NM
23. 8 Houses (11.25◦ × 8 = 90◦);

x8

Answer. x8 = 120 NM

Exercise Group. In Exercise 1.4.7.17–23 we determined the deviation of
a wa‘a following a day of sailing (120 nautical miles). Your task now is to
calculate the distance the wa‘a has progressed along the reference course (north)
for each deviation, denoted as y. Round your answer to the nearest tenth of a
nautical mile and remember that one house corresponds to 11.25◦.
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120 NM

7 House

6 Houses

5 Houses

4 Houses

3 Houses

2 Houses
1 House

R
ef

er
en

ce
C

ou
rs

e,
12

0
N

M

y7

y6

y5

y4

y3

y2

y1

24. 1 House (11.25◦ × 1 = 11.25◦);
y1

Answer. y1 = 117.7 NM

25. 2 Houses (11.25◦ × 2 = 22.5◦);
y2

Answer. y2 = 110.9 NM
26. 3 Houses

(11.25◦ × 3 = 33.75◦); y3

Answer. y3 = 99.8 NM

27. 4 Houses (11.25◦ × 4 = 45◦);
y4

Answer. y4 = 84.5 NM
28. 5 Houses

(11.25◦ × 5 = 56.25◦); y5

Answer. y5 = 66.7 NM

29. 6 Houses (11.25◦ × 6 = 67.5◦);
y6

Answer. y6 = 45.9 NM
30. 7 Houses

(11.25◦ × 7 = 78.75◦); y7

Answer. y7 = 23.4 NM

Exercise Group. One way to determine your bearing on a canoe is by
observing and comparing the positions of celestial and other markers relative to
your canoe. To facilitate this, you can mark the locations of the Star Compass
on the opposite railings from the navigator’s seat in the back corner of the
canoe. However, since the Star Compass is circular and the canoe is rectangular,
accurately placing the markings can be challenging.
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y1

y2

y3

y4

y5

y6

x7x8

When the navigator occupies the port stern (back left) corner of the deck,
markers indicating the boundaries between houses can be placed on the corre-
sponding railings on the bow (front) and starboard (right) sides of the canoe.
For each value of θ, calculate the distance along the starboard railing (y) or
bow railing (x) for a canoe with dimensions l = 50 ft and w = 20 ft. Round
your answers to three decimal places.

31. θ = 5.625◦; y1

Answer. y1 = 1.970 ft
32. θ = 16.875◦; y2

Answer. y2 = 6.067 ft
33. θ = 28.125◦; y3

Answer. y3 = 10.69 ft
34. θ = 39.375◦; y4

Answer. y4 = 16.414 ft
35. θ = 50.625◦; y5

Answer. y5 = 24.370 ft
36. θ = 61.875◦; y6

Answer. y6 = 37.417 ft
37. θ = 73.125◦; x7

Answer. x7 = 15.167 ft
38. θ = 84.375◦; x8

Answer. x8 = 4.925 ft

Exercise Group. Use the right triangle (not drawn to scale) provided below
to solve for the given information. Round your solutions to two decimal places.
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b

c
a

α

β

39. a = 5, β = 35◦. Find b, c, and
α

Answer. b = 3.50, c = 6.10,
α = 55◦

40. b = 12, β = 23◦. Find a, c,
and α

Answer. a = 28.27,
c = 30.71, α = 67◦

41. b = 7, α = 75◦. Find a, c, and
β

Answer. a = 26.12,
c = 27.05, β = 15◦

42. c = 4, β = 50◦. Find a, b, and
α

Answer. a = 3.06, b = 2.57,
α = 40◦

43. c = 10, α = 18◦. Find a, b,
and β

Answer. a = 3.09, b = 9.51,
β = 72◦

44. a = 6, α = 38◦. Find b, c, and
β

Answer. b = 7.68, c = 9.75,
β = 52◦

45. A wa‘a sails in the direction of the house Nālani Ho‘olua for one day,
covering 120 nautical miles. How many nautical miles has the wa‘a
traveled north? How many miles has the wa‘a traveled west? To calculate
the angle θ, refer to the Star Compass (Figure 1.1.4) to determine the
number of houses, and use the fact that one house is 11.25◦.

120 mi

west

north

θ

Answer. 66.7 NM west; 99.8 NM north
46. Movement of Sand.The movement of sand on a beach is a dynamic

process influenced by various factors, such as waves. When waves approach
the shore at an angle, they lead to the shifting of sand. During the swash



CHAPTER 1. TRIGONOMETRIC FUNCTIONS 62

phase, as the wave crashes onto the shore, water and sediment move onto
the beach following the wave’s angle. Subsequently, gravity propels the
water and sediment back into the ocean, perpendicular to the shoreline,
in a process known as backwash. This interplay of swash and backwash
creates a zig-zag pattern called longshore drift.

Certain beaches undergo seasonal changes in wave direction. Some
experience waves from one direction in one season and from another
direction in the next, while those predominantly receiving waves from a
single direction might accumulate sand in specific areas.

Calculate how far along the shore a single grain of sand moves after
a wave breaks at a 60◦ angle and travels onto the shore for 10 ft before
receding back into the ocean.

Waves

10
ft

swash

xmovement

backw
ash

60◦

Answer. 5ft

Exercise Group. Between 2013 and 2017, Hōkūle‘a completed a global
circumnavigation with a mission mālama honua - “care for Island Earth” and
to foster a sense of ‘ohana (“family”) for all people and places. This remarkable
voyage spanned 40,000 nautical miles and made stops at over 150 ports across
18 nations.

Throughout this voyage, Earth’s rotation occurs around an axis that extends
from the North Pole to the South Pole. The rotation imparts an angular speed
and linear velocity to every point on Earth. Assuming Earth completes one
rotation within 24 hours and treating Earth as a perfect sphere with a radius
of R = 4, 000 miles, we can calculate the following parameters for each of the
Mālama Honua voyage’s ports, given their latitudes (ϕ):

(a) Calculate r, the distance from the port to Earth’s Axis of Rotation (in
miles, rounded to one decimal place).

(b) Calculate ω, the angular velocity (in radians per hour, rounded to four
decimal places).

(c) Calculate v, the linear speed (in miles per hour, rounded to the nearest
whole number).
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Earth’s Axis

Equator
R

R

r

ϕ

ϕ
Port City

47. Hilo, Hawai‘i (19.7216◦ N)
Answer.

(a) r = 3, 8765.4 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 986 mi/hr

48. Papeete, Tahiti (17.5325◦ S)
Answer.

(a) r = 3, 814.2 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 999 mi/hr
49. Apia, Samoa (13.8507◦ S)

Answer.

(a) r = 3, 883.7 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 017 mi/hr

50. Waitangi, Aotearoa (35.2683◦

S)
Answer.

(a) r = 32, 65.8 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 855 mi/hr
51. Sydney, Australia (33.8688◦ S)

Answer.

(a) r = 3, 321.3 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 870 mi/hr

52. Bali, Indonesia ( 8.4095◦ S)
Answer.

(a) r = 3, 957.0 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 036 mi/hr
53. Port Louis, Mauritius

(20.1609◦ S)
Answer.

(a) r = 3, 754.9 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 983 mi/hr

54. Cape Town, South Africa
(33.9249◦ S)
Answer.

(a) r = 3, 319.1 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 869 mi/hr
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55. Natal, Brazil (5.7842◦ S)
Answer.

(a) r = 3, 979.6 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 042 mi/hr

56. Necker, British Virgin Islands
(18.5268◦ N)
Answer.

(a) r = 3, 792.7 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 993 mi/hr
57. Yarmouth, Nova Scotia

(43.8379◦ N)
Answer.

(a) r = 3, 792.7 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 755 mi/hr

58. Balboa, Panama (8.9614◦N)
Answer.

(a) r = 3, 951.2 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 034 mi/hr

59. Galapagos Islands (0.9538◦ S)
Answer.

(a) r = 3, 999.5 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 1, 047 mi/hr

60. Rapa Nui (27.1127◦ S)
Answer.

(a) r = 3, 560.5 miles;

(b) ω = 0.2618 rad/hr;

(c) v = 932 mi/hr
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1.5 Trigonometric Functions of Any Angles
Now that we have been introduced to the six trigonometric functions for special
angles in the first quadrant, we can explore their properties across all quadrants.

1.5.1 Determine the Signs of the Trigonometric Functions
Based on its Quadrant

Let P (x, y) be a point on the circle. The signs of the six trigonometric functions
vary depending on the quadrant in which P (x, y) lies in.

x

y

r

P (x, y)

θy

x

Example 1.5.1 Let P (x, y) is in Quadrant II. Determine the signs for each of
the six trigonometric functions.
Solution. Since we are in Quadrant II, x < 0 and y > 0. Note that r > 0.
Then we have

sin θ = y

r
= (+)

(+) = (+) cos θ = x

r
= (−)

(+) = (−) tan θ = y

x
= (+)

(−) = (−)

csc θ = r

y
= (+)

(+) = (+) sec θ = r

x
= (+)

(−) = (−) cot θ = x

y
= (−)

(+) = (−)

□
You can check the remaining quadrants using a similar approach. Table 1.5.2

and Figure 1.5.3 provide a list of the signs of the six trigonometric functions
for each quadrant.
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Table 1.5.2 Signs of the trigonometric functions

Quadrant Positive Functions Negative Functions

I all none
II sin, csc cos, sec, tan, cot
III tan, cot sin, csc, cos, sec
IV cos, sec sin, csc, tan, cot

x

y

++

- -

sin θ, csc θ

x

y

+-

+ -

tan θ, cot θ

x

y

+-

- +

cos θ, sec θ

Figure 1.5.3 Signs of trigonometric functions
Example 1.5.4 If sin θ < 0 and cos θ > 0, what quadrant does θ lie in?
Solution. Since sin θ < 0, then θ is either in Quadrant III or IV. However,
we also have cos θ > 0 which means that θ is either in Quadrant I or IV. Thus
the only quadrant that satisfied both conditions is Quadrant IV. □

Mnemonic devices for remembering the quadrants in which the trigonometric
functions are positive are

• “A Smart T rig C lass”

• “All Students Take Calculus”

which correspond to “All S in Tan Cos.”

x

y

AllSin
(Csc)

Tan
(Cot)

Cos
(Sec)

Example 1.5.5 Let sin θ = − 12
13 and cos θ = − 5

13 . Compute the exact values
of the remaining trigonometric functions of θ using identities.
Solution. Since sin θ < 0 and cos θ < 0, we refer to Table 1.5.2 and see that
θ is in Quadrant III. From Table 1.5.2 we know tan θ > 0, csc θ < 0, sec θ < 0,
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cot θ > 0. From the Quotient Identity (Definition 1.4.3), we have

tan θ = sin θ

cos θ
=

12
13
5

13
= 12

5

Next, using the Reciprocal Identities (Definition 1.4.2), we get

csc θ = 1
sin θ

= 1
− 12

13
= −13

12

sec θ = 1
cos θ

= 1
− 5

13
= −13

5

cot θ = 1
tan θ

= 1
12
5

= 5
12

□

1.5.2 Reference Angles
Now that we can determine the signs of trigonometric functions, we will
demonstrate how the value of any trigonometric function at any angle can be
found from its value in Quadrant I (between 0◦ and 90◦ or 0 and π

2 ).

Definition 1.5.6 Let t be a real number. A reference angle, t′, is the acute
angle (< 90◦) formed by the terminal side of angle t and the x-axis. In other
words, it is the shortest distance along the unit circle measured between the
terminal side and the x-axis. Angles in Quadrant I are their own reference
angles. ♢

Remark 1.5.7 Calculating the reference angle. To calculate the reference
angle t‘ for a given angle t:

• In radians, if t > 2π or if t < 0, add or subtract multiples of 2π to obtain
a coterminal angle between 0 and 2π. Then, find the reference angle.

• In degrees, if t > 360◦ or t < 0◦, add or subtract multiples of 360◦ to
obtain a coterminal angle between 0◦ and 360◦. Then, find the reference
angle.

Quadrant I:

t′ = t

x

y

t = t′

Quadrant II:

t′ = π − t

t′ = 180◦ − t

x

y

t = t′

Quadrant III:

t′ = t − π

t′ = t − 180◦

x

y

t

t′

Quadrant IV:

t′ = 2π − t

t′ = 360◦ − t

x

y

t

t′
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Example 1.5.8 Find the reference angle for each value of t

(a) t = π
3

x

y

π
3

Solution. The angle t = π
3 is in the first quadrant and so it is its own

reference angle: t = t′ = π
3

(b) t = 3π
4

x

y

3π
4

t′

Solution. From the figure, we see that the shortest distance to the
x-axis is in the direction of π. We see that t′ + 3π

4 = π so t′ = π − 3π
4 = π

4 .

(c) t = − 3π
4

x

y

− 3π
4

t′

Solution 1. Since t < 0, we can add 2π to get − 3π
4 + 2π = 5π

4 . From
the formula, we get t′ = 5π

4 − π = π
4 .
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Solution 2. Since − 3π
4 spans only two quadrants counterclockwise, we

can treat it similarly to an angle in Quadrant II. By the previous problem,
t′ + 3π

4 = π so t′ = π − 3π
4 = π

4 .

(d) t = 240◦

x

y

240◦

t′

Solution. From the figure we see the shortest distance to the x-axis is
towards 180◦. We observe that 240◦ − t′ = 180◦ so t′ = 240◦ − 180◦ = 60◦

(e) t = 11π
6

x

y

11π
6

t′

Solution. From the figure, we see the shortest distance to the x-axis is
towards 2π. We observe that t′ + 11π

6 = 2π so t′ = 2π − 11π
6 = π

6 .

(f) t = 2π
3

x

y

2π
3

t′



CHAPTER 1. TRIGONOMETRIC FUNCTIONS 70

Solution. From the figure, we see the shortest distance to the x-axis is
towards π. We observe that t′ + 2π

3 = π so t′ = π − 2π
3 = π

3 .

□

Remark 1.5.9 Calculate an angle in standard position given its
quadrant and reference angle. To calculate an angle in standard position,
t, given the quadrant that t lies in and the reference angle t′,
Quadrant I:

t = t′

x

y

t = t′

Quadrant II:

t = π − t′

t = 180◦ − t′

x

y

t
t′

Quadrant III:

t = t′ − π

t = t′ − 180◦

x

y

t

t′

Quadrant IV:

t = 2π − t′

t = 360◦ − t′

x

y

t

t′

For radians only: If the reference angle (in radians) is of the form t′ = aπ
b ,

then the associated angle in standard position, t, can be calculated by

x

y

I
t = t′ = aπ

b

II
t = (b−a)π

b

III
t = (b+a)π

b

IV
t = (2b−a)π

b

Example 1.5.10 Calculate an angle given its reference angle and
quadrant. Given a reference angle, t, compute the associated angle in standard
position for Quadrant II, III, and IV.
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(a) t′ = π
6

x

y

π
6

(i) Quadrant II
Solution 1. In Quadrant II, the associated angle is t = π − π

6 =
6π
6 − π

6 = 5π
6

x

y

5π
6

π
6

Solution 2. Since t′ = π
6 = 1π

6 , then t′ = (6−1)π
6 = 5π

6
(ii) Quadrant III

Solution 1. In Quadrant III, the associated angle is t = π + π
6 =

6π
6 + π

6 = 7π
6

x

y

7π
6

π
6

Solution 2. t′ = (6+1)π
6 = 7π

6
(iii) Quadrant IV

Solution 1. In Quadrant IV, the associated angle is t = 2π − π
6 =

12π
6 − π

6 = 11π
6
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x

y

11π
6

π
6

Solution 2. t′ = (2·6−1)π
6 = 11π

6

(b) t′ = 45◦

x

y

45◦

(i) Quadrant II
Solution. In Quadrant II, the associated angle is t = 180◦ − 45◦ =
135◦

x

y

135◦

45◦

(ii) Quadrant III
Solution. In Quadrant III, the associated angle is t = 180◦ +45◦ =
225◦
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x

y

225◦

45◦

(iii) Quadrant IV
Solution. In Quadrant IV, the associated angle is t = 360◦ −45◦ =
315◦

x

y

315◦

45◦

□

1.5.3 Evaluating Trigonometric Functions Using Reference
Angles

To evaluate trigonometric functions in any quadrant using reference angles,
we begin with an angle, θ, that lies in Quadrant II. When evaluating sin θ
and cos θ., we begin by plotting θ in standard position and then proceed to
determine and draw its corresponding reference angle, θ′.
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x

y

P

r θ

θ′

By definition we know that

sin θ = y

r
; cos θ = x

r

Next, we draw the reference angle, θ′ in standard position

x

y

P ′(x′, y′)P (x, y)

A

r r

x x′

y′y

θ′
θ

We now have
sin θ′ = y′

r
; cos θ′ = x′

r
.

Notice that the y-coordinates for P and P ′ share the same value, thus y = y′
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and we get
sin θ = sin θ′.

Similarly, we can see that the x-coordinates of P and P ′ have opposite
values, thus x = −x′ and

cos θ = − cos θ′.

You may have noticed that we have two similar triangles, differing only
in their x-coordinates have opposite values. Consequently, the values of each
trigonometric function for the two triangles will match, except for a potential
distinction in signs. The sign of each function can be deduced by referring to
Table 1.5.2. This approach is applicable across all quadrants. To sum up, we
now outline the steps for utilizing reference angles to evaluate trigonometric
functions.
Remark 1.5.11 Steps for Evaluating Trigonometric Functions Using
Reference Angles. The values of a trigonometric function for a specific
angle are equivalent to the values of the same trigonometric function for the
reference angle, with a potential distinction in sign. To compute the value of a
trigonometric function for any angle, use the following steps

1. Draw the angle in standard position.

2. Determine the reference angle associated with the angle.

3. Evaluate the trigonometric function at the reference angle.

4. Use Table 1.5.2 and the quadrant of the original angle to determine the
appropriate sign for the function.

Example 1.5.12 Use the reference angle associated with the given angle to
find the exact value of

(a) cos 210◦

Solution. We will use the steps for evaluating trigonometric functions
using reference angles.

(a) First we draw the angle

x

y

P
r

θ

θ′
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(b) The reference angle is

θ′ = 210◦ − 180◦ = 30◦

(c) cos 30◦ =
√

3
2

(d) Since 210◦ lies in Quadrant III, we know that cos θ < 0, so

cos 210◦ = −
√

3
2

(b) tan 7π
4

Solution. We will use the steps for evaluating trigonometric functions
using reference angles.

(a) First we draw the angle

x

y

P

r

θ

θ′

(b) The reference angle is

2π − 7π

4 = 8π

4 − 7π

4 = π

4

(c) tan π

4 = 1

(d) Since 7π
4 lies in Quadrant IV, we know that tan θ < 0, so

tan 7π

4 = −1

□

Example 1.5.13 Calculate sin θ and cos θ if θ = 20π
3

Solution.

1. First we draw the angle
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x

y

P
θ

θ′

Figure 1.5.14 The angle θ = 20π
3 makes three rotations before ending in

Quadrant II.

2. To obtain the reference angle, we first subtract multiples of 2π from θ to
obtain a coterminal angle between 0 and 2π:

20π

3 − 2π = 20π

3 − 6π

3 = 14π

3
20π

3 − 4π = 20π

3 − 12π

3 = 8π

3
20π

3 − 6π = 20π

3 − 18π

3 = 2π

3

From Example 1.5.8, the reference angle for 2π
3 is θ′ = π

3

3. sin π
3 =

√
3

2 and cos π
3 = 1

2

4. Since 20π
3 lies in Quadrant II, we know that sin θ > 0 and cos θ < 0, so

sin 20π

3 =
√

3
2 ; cos 20π

3 = −1
2

□

1.5.4 Periodic Functions
In Figure 1.5.14 of Example 1.5.13, point P corresponds to the angle 20π

3 . To
determine the reference angle, we subtracted multiples of 2π. Each iteration of
2π retraces the unit circle back to the point P , resulting in a coterminal angle.
Therefore

sin 2π

3 = sin 8π

3 = sin 14π

3 = sin 20π

3
Rewriting the angles we get

sin
(

2π

3 + 0 · 2π

)
= sin

(
2π

3 + 1 · 2π

)
= sin

(
2π

3 + 2 · 2π

)
= sin

(
2π

3 + 3 · 2π

)
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Similarly,

cos
(

2π

3 + 0 · 2π

)
= cos

(
2π

3 + 1 · 2π

)
= cos

(
2π

3 + 2 · 2π

)
= cos

(
2π

3 + 3 · 2π

)
In general, consider an angle θ measured in radians and its corresponding

point P on the unit circle. Adding or subtracting integer multiples of 2π to
θ will lead to a point on the unit circle that aligns with P . Thus, the values
of sine and cosine for all angles corresponding to point P are equivalent. This
leads us to the following periodic properties.

Definition 1.5.15 Periodic Properties.

sin(θ + 2πk) = sin θ cos(θ + 2πk) = cos θ

where k is any integer. ♢
Functions like these that repeats its values in regular cycles are called

periodic functions.

Definition 1.5.16 A function f is called periodic if there exists a positive
number p such that

f(θ + p) = f(θ)

for every θ. The smallest number p is called the period of f . ♢
Sine, cosine, cosecant, and secant repeat their values with a period of 2π

while tangent and cotangent have a period of π.

Definition 1.5.17 Periodic Properties.

sin(θ + 2π) = sin θ cos(θ + 2π) = cos θ tan(θ + π) = tan θ

csc(θ + 2π) = csc θ sec(θ + 2π) = sec θ cot(θ + π) = cot θ

♢

1.5.5 Trigonometric Table
The Trigonometric Identities and reference angles give us the values of trigono-
metric functions in Table 1.5.18.
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Table 1.5.18 Values of the six trigonometric functions for common
angles

θ (deg) θ (rad) sin θ cos θ tan θ csc θ sec θ cot θ

0◦ 0 0 1 0 undef 1 undef

30◦ π

6
1
2

√
3

2

√
3

3 2 2
√

3
3

√
3

45◦ π

4

√
2

2

√
2

2 1
√

2
√

2 1

60◦ π

3

√
3

2
1
2

√
3 2

√
3

3 2
√

3
3

90◦ π

2 1 0 undef 1 undef 0

120◦ 2π

3

√
3

2 −1
2 −

√
3 2

√
3

3 −2 −
√

3
3

135◦ 3π

4

√
2

2 −
√

2
2 −1

√
2 −

√
2 −1

150◦ 5π

6
1
2 −

√
3

2 −
√

3
3 2 −2

√
3

3 −
√

3

180◦ π 0 −1 0 undef −1 undef

210◦ 7π

6 −1
2 −

√
3

2

√
3

3 −2 −2
√

3
3

√
3

225◦ 5π

4 −
√

2
2 −

√
2

2 1 −
√

2 −
√

2 1

240◦ 4π

3 −
√

3
2 −1

2
√

3 −2
√

3
3 −2

√
3

3

270◦ 3π

2 −1 0 undef −1 undef 0

300◦ 5π

3 −
√

3
2

1
2 −

√
3 −2

√
3

3 2 −
√

3
3

315◦ 7π

4 −
√

2
2

√
2

2 −1 −
√

2
√

2 −1

330◦ 11π

6 −1
2

√
3

2 −
√

3
3 −2 2

√
3

3 −
√

3

Remark 1.5.19 Table Made Easy. Table 1.5.18 may seem intimidating but
if you recognize the symmetry about 90◦, 180◦, and 270◦, you will only need



CHAPTER 1. TRIGONOMETRIC FUNCTIONS 80

to focus on the values for the first quadrant (Table 1.4.6). In fact, you need
only produce the values of sine in Quadrant I. Use the Cofunction Identities
(Definition 1.4.7) to find the values of cosine. Next, apply the trigonometric
identity to find tan θ = sin θ/ cos θ. Finally, use the the Reciprocal Identities
(Definition 1.4.2) to produce csc θ, sec θ, and cot θ.

1.5.6 Pythagorean Identities
Definition 1.5.20 Pythagorean Identities.

1. sin2 θ + cos2 θ = 1

2. 1 + tan2 θ = sec2 θ

3. 1 + cot2 θ = csc2 θ

♢

Proof. We will use the Pythagorean Theorem to prove the reciprocal identities.

x

y

r

x = cos θ

y = sin θ

P (x, y)

θ

If the point P (x, y) is a point on the circle with radius r, then the formula for
the circle is

x2 + y2 = r2

By definition x
r = cos θ and y

r = sin θ. Thus we have

sin2 θ + cos2 θ =
(y

r

)2
+

(x

r

)2
= x2 + y2

r2 = r2

r2 = 1

which is our first Pythagorean Identity. The proofs of the remaining identities
are left as exercises. ■

Example 1.5.21 Let θ be an angle in Quadrant IV and let cos θ = 3
5 . Calculate

the exact values of sin θ and tan θ.
Solution. Substituting our value of cos θ into the Pythagorean Identity,

sin2 θ + cos2 θ = 1
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sin2 θ +
(

3
5

)2
= 1

sin2 θ + 9
25 = 1

sin2 θ = 1 − 9
25

sin2 θ = 16
25

Taking the square root of both sides,

sin θ = ±
√

16
25 = ±4

5

Since θ is in Quadrant II, we have sin θ < 0. Thus we choose the negative
answer to get

sin θ = −4
5

Next we use the Quotient Identity to get

tan θ = sin θ

cos θ
=

− 4
5

3
5

= −4
5 · 5

3 = −4
3

□

1.5.7 Even and Odd Trigonometric Functions
Recall that a function f is even if f(−x) = f(x) for all values of x, and a
function is odd if f(−x) = −f(x) for all values of x. With this understanding,
we can now classify trigonometric functions as either even or odd.

Definition 1.5.22 Even and Odd Trigonometric Properties. The
cosine and secant functions are even

cos(−θ) = cos θ sec(−θ) = sec θ

The sine, cosecant, tangent, and cotangent functions are odd

sin(−θ) = − sin θ csc(−θ) = − csc(θ)
tan(−θ) = − tan θ cot(−θ) = − cot(θ)

♢

Proof. Let P be a point on the unit circle corresponding to the angle θ with
coordinates (x, y) and Q be the point corresponding to the angle −θ with
coordinates (x, −y).
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x

y

0 1

P = (x.y)

Q = (x, −y)

−θ

θ

Using the Definition 1.3.4 for the six trigonometric functions we have

sin θ = y, sin(−θ) = −y, cos θ = x, cos(−θ) = x

So

sin(−θ) = −y = − sin θ, cos(−θ) = x = cos θ

Thus we conclude that sine is an odd function and cosine is an even func-
tion. Next, using the Quotient (Definition 1.4.3) and Reciprocal Identities
(Definition 1.4.2) we get

tan(−θ) = sin(−θ)
cos(−θ) = − sin θ

cos θ
= − tan θ,

cot(−θ) = 1
tan(−θ) = 1

− tan θ
= − cot θ,

csc(−θ) = 1
sin(−θ) = 1

− sin θ
= − csc θ,

sec(−θ) = 1
cos(−θ) = 1

− cos θ
= sec θ.

Thus tangent, cotangent, cosecant are odd functions and secant is an even
function. ■

Example 1.5.23 Use the even-odd properties of trigonometric functions to
determine the exact value of

(a) csc(−30◦)

Solution. Since cosecant is an odd function, the cosecant of a negative
angle is the opposite sign of the cosecant of the positive angle. Thus,
csc(−30◦) = − csc 30◦ = −2

(b) cos(−θ) if cos θ = 0.4

Solution. Cosine is an even function so cos(−θ) = cos θ = 0.4.
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□

1.5.8 Exercises

Exercise Group. Determine the quadrant containing θ given the following
1. cot θ < 0 and cos θ < 0

Answer. QII
2. csc θ > 0 and tan θ > 0

Answer. QI
3. cos θ > 0 and sin θ < 0

Answer. QIV
4. sec θ > 0 and tan θ > 0

Answer. QI
5. tan θ < 0 and csc θ > 0

Answer. QII
6. cot θ > 0 and sin θ < 0

Answer. QIV
7. sec θ < 0 and csc θ < 0

Answer. QIII
8. cos θ < 0 and tan θ > 0

Answer. QIII

Exercise Group. The point P (x, y) is on the terminal side of angle θ.
Determine the exact values of the six trigonometric functions at θ

9.

x

y

P(-8,6)
θ

Answer. sin θ = 3
5 ,

cos θ = − 4
5 , tan θ = − 3

4 ,
csc θ = 5

3 , sec θ = − 5
4 ,

cot θ = − 4
3

10.

x

y

P(6,-7)

θ

Answer. sin θ = − 7
√

85
85 ,

cos θ = 6
√

85
85 , tan θ = − 7

6 ,
csc θ = −

√
85
7 , sec θ =

√
85
6 ,

cot θ = − 6
7

11. (3, −4)
Answer. sin θ = − 4

5 ,
cos θ = 3

5 , tan θ = − 4
3 ,

csc θ = − 5
4 , sec θ = 5

3 ,
cot θ = − 3

4

12. (−12, −5)
Answer. sin θ = − 5

13 ,
cos θ = − 12

13 , tan θ = 5
12 ,

csc θ = − 13
5 , sec θ = − 13

12 ,
cot θ = 12

5

13. (−2, −3)
Answer. sin θ = − 3

√
13

13 ,
cos θ = − 2

√
13

13 , tan θ = 3
2 ,

csc θ = −
√

13
3 , sec θ = −

√
13
2 ,

cot θ = 2
3

14. (−4, 4)
Answer. sin θ =

√
2

2 ,
cos θ = −

√
2

2 , tan θ = −1
csc θ =

√
2, sec θ = −

√
2,

cot θ = −1

15. (−24, 7)
Answer. sin θ = 7

25 ,
cos θ = − 24

25 , tan θ = − 7
24 ,

csc θ = 25
7 , sec θ = − 25

24 ,
cot θ = − 24

7

16. (9, −40)
Answer. sin θ = − 40

41 ,
cos θ = 9

41 , tan θ = − 40
9 ,

csc θ = − 41
40 , sec θ = 41

9 ,
cot θ = − 9

40

Exercise Group. Find the exact value of the remaining five trigonometric
functions of θ from the given information.
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17. tan θ = − 12
5 , θ is Quadrant II

Answer. sin θ = 12
13 ,

cos θ = − 5
13 , csc θ = 13

12 ,
sec θ = − 13

5 , cot θ = − 5
12

18. cos θ = 3
5 , θ is Quadrant IV

Answer. sin θ = − 4
5 ,

tan θ = − 4
3 , csc θ = − 5

4 ,
sec θ = 5

3 , cot θ = − 3
4

19. csc θ =
√

10
2 , θ is Quadrant II

Answer. sin θ =
√

10
5 ,

cos θ = −
√

15
5 , tan θ = −

√
6

3 ,
sec θ = −

√
15
3 , cot θ = − 6

2

20. cos θ = − 5
8 , θ is Quadrant III

Answer. sin θ = −
√

39
8 ,

tan θ =
√

39
5 , csc θ = − 8

√
39

39 ,
sec θ = − 8

5 , cot θ = 5
√

39
39

21. sec θ = −2, π < θ < 3π
2

Answer. sin θ = −
√

3
2 ,

cos θ = − 1
2 , tan θ =

√
3,

csc θ = − 2
√

3
3 , cot θ =

√
3

3

22. cot θ = − 5
3 , 3π

2 < θ < 2π

Answer. sin θ = − 3
√

34
34 ,

cos θ = 5
√

34
34 , tan θ = − 3

5 ,
csc θ = −

√
34
3 , sec θ =

√
34
5

23. cos θ = 2
3 , 0 < θ < π

Answer. sin θ =
√

5
3 ,

tan θ = −
√

5
2 , csc θ = 3

√
5

5 ,
sec θ = − 3

2 , cot θ = − 2
√

5
5

24. tan θ = 7
4 , 0 < θ < π

2

Answer. sin θ = 7
√

65
65 ,

cos θ = 4
√

65
65 , csc θ =

√
65
7 ,

sec θ =
√

65
4 , cot θ = 4

7

25. csc θ = 3
2 , tan θ < 0

Answer. sin θ = 2
3 ,

cos θ = −
√

5
3 , tan θ = − 2

√
5

5 ,
sec θ = − 3

√
5

5 , cot θ = −
√

5
2

26. sin θ = 5
6 , cot θ > 0

Answer. cos θ =
√

11
6 ,

tan θ = 5
√

11
11 , csc θ = 6

5 ,
sec θ = 6

√
11

11 , cot θ =
√

11
5

27. sin θ = − 15
17 , cos θ < 0

Answer. cos θ = − 8
17 ,

tan θ = 15
8 , csc θ = − 17

15 ,
sec θ = − 17

8 , cot θ = 8
15

28. cot θ = − 1
3 , sin θ > 0

Answer. sin θ = 3
√

10
10 ,

cos θ = −
√

10
10 , tan θ = −3,

csc θ =
√

10
3 , sec θ = −

√
10

Exercise Group. Given a reference angle, t′, calculate the corresponding
angle, t, in standard position, along with the values of sin t, cos t, and tan t for

(a) Quadrant II

(b) Quadrant III

(c) Quadrant IV

29. t′ = π
4

Answer 1. t = 3π
4 ,

sin 3π
4 =

√
2

2 , cos 3π
4 = −

√
2

2 ,
tan 3π

4 = −1
Answer 2. t = 5π

4 ,
sin 5π

4 = −
√

2
2 , cos 5π

4 = −
√

2
2 ,

tan 5π
4 = 1

Answer 3. t = 7π
4 ,

sin 7π
4 = −

√
2

2 , cos 7π
4 =

√
2

2 ,
tan 7π

4 = −1

30. t′ = π
3

Answer 1. t = 2π
3 ,

sin 2π
3 =

√
3

2 , cos 2π
3 = − 1

2 ,
tan 2π

3 = −
√

3
Answer 2. t = 4π

3 ,
sin 4π

3 = −
√

3
2 , cos 4π

3 = − 1
2 ,

tan 4π
3 =

√
3

Answer 3. t = 5π
3 ,

sin 5π
3 = −

√
3

2 , cos 5π
3 = 1

2 ,
tan 5π

3 = −
√

3
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31. t′ = 30◦

Answer 1. t = 150◦,
sin 150◦ = 1

2 , cos 150◦ = −
√

3
2 ,

tan 150◦ = −
√

3
3

Answer 2. t = 210◦,
sin 210◦ = − 1

2 ,
cos 210◦ = −

√
3

2 ,
tan 210◦ =

√
3

3
Answer 3. t = 330◦,
sin 330◦ = − 1

2 , cos 330◦ =
√

3
2 ,

tan 330◦ = −
√

3
3

32. t′ = 60◦

Answer 1. t = 120◦,
sin 120◦ =

√
3

2 , cos 120◦ = − 1
2 ,

tan 120◦ = −
√

3
Answer 2. t = 240◦,
sin 240◦ = −

√
3

2 ,
cos 240◦ = − 1

2 , tan 240◦ =
√

3
Answer 3. t = 300◦,
sin 300◦ = −

√
3

2 , cos 300◦ = 1
2 ,

tan 300◦ = −
√

3

Exercise Group. For each angle θ,

(a) Determine the quadrant in which θ lies.

(b) Calculate the reference angle θ′

(c) Use the reference angle, θ′ to evaluate the exact values of the six trigono-
metric functions for θ

33. θ = − 3π
4

Answer
1. QIII
Answer
2. θ′ = π

4
Answer
3. sin θ = −

√
2

2 ,
cos θ = −

√
2

2 ,
tan θ = 1,
csc θ = −

√
2,

sec θ = −
√

2,
cot θ = 1

34. θ = 4π
3

Answer
1. QIII
Answer
2. θ′ = π

3
Answer
3. sin θ = −

√
3

2 ,
cos θ = − 1

2 ,
tan θ =

√
3,

csc θ = − 2
√

3
3 ,

sec θ = −2,
cot θ =

√
3

3

35. θ = 11π
6

Answer
1. QIV
Answer
2. θ′ = π

6
Answer
3. sin θ = − 1

2 ,
cos θ =

√
3

2 ,
tan θ = −

√
3

3 ,
csc θ = −2,
sec θ = 2

√
3

3 ,
cot θ = −

√
3

36. θ = 7π
3

Answer 1. QI
Answer
2. θ′ = π

3
Answer
3. sin θ =

√
3

2 ,
cos θ = 1

2 ,
tan θ =

√
3,

csc θ = 2
√

3
3 ,

sec θ = 2,
cot θ =

√
3

3

37. θ = 120◦

Answer 1. QII
Answer
2. θ′ = 60◦

Answer
3. sin θ =

√
3

2 ,
cos θ = − 1

2 ,
tan θ = −

√
3,

csc θ = 2
√

3
3 ,

sec θ = −2,
cot θ = −

√
3

3

38. θ = 480◦

Answer 1. QII
Answer
2. θ′ = 60◦

Answer
3. sin θ =

√
3

2 ,
cos θ = − 1

2 ,
tan θ = −

√
3,

csc θ = 2
√

3
3 ,

sec θ = −2,
cot θ = −

√
3

3

Exercise Group. Use the fact that the trigonometric functions are periodic
to find the exact value for each expression.

39. tan 420◦

Answer.
√

3
40. csc 540◦

Answer. Un-
defined

41. sin 765◦

Answer.
√

2
2

42. sec 1200◦

Answer. −2



CHAPTER 1. TRIGONOMETRIC FUNCTIONS 86

43. cot 8π
3

Answer. −
√

3
3

44. cos 21π
4

Answer. −
√

2
2

45. tan 35π
6

Answer.
√

3
2

46. sin 39π
4

Answer. −
√

2
2

47. Prove the second Pythagorean Identity (Definition 1.5.20): 1 + tan2 θ =
sec2 θ.

Hint. Begin with sin2 θ+cos2 θ = 1 and divide both sides of the equation
by cos2 θ.

48. Prove the third Pythagorean Identity (Definition 1.5.20): 1 + cot2 θ + 1 =
csc2 θ.

Hint. Begin with sin2 θ+cos2 θ = 1 and divide both sides of the equation
by sin2 θ.

Exercise Group. Use the Pythagorean Identity to find the exact value of
the following

49. sin2 38◦+cos2 38◦

Answer. 1
50. csc2 13◦−cot2 13◦

Answer. 1
51. cot2 200◦ −

csc2 200◦

Answer. −1
52. sec2 6π

5 − tan2 6π
5

Answer. 1
53. tan2 5π

7 − sec2 5π
7

Answer. −1
54. sin2 14π

13 +
cos2 14π

13
Answer. 1

Exercise Group. Use the Pythagorean Identities to express the first trigono-
metric function of θ in terms of the second function, given the quadrant.

55. sin θ, cos θ, Quadrant III
Answer. sin θ =
−

√
1 − cos2 θ

56. cos θ, sin θ, Quadrant II
Answer. cos θ =
−

√
1 − sin2 θ

57. tan, sec θ, Quadrant IV
Answer. tan θ =
−

√
sec2 θ − 1

58. cot θ, csc θ, Quadrant III
Answer. cot θ =√

csc2 θ − 1
59. tan θ, sin θ, Quadrant III

Answer. tan θ = − sin θ√
1−sin2 θ

60. tan θ, cos θ, Quadrant II
Answer. tan θ =

√
1−cos2 θ
cos θ

Exercise Group. Use the Pythagorean Identities to find the exact values of
the remaining five trigonometric functions of θ from the given information.

61. tan θ = − 4
3 , θ is in Quadrant

IV
Answer. sin θ = − 4

5 ,
cos θ = 3

5 , csc θ = − 5
4 ,

sec θ = 5
3 , cot θ = − 3

4

62. cos θ = − 1
4 , θ is in Quadrant

II
Answer. sin θ =

√
15
4 ,

tan θ = −
√

15, csc θ = 4
√

15
15 ,

sec θ = −4, cot θ = −
√

15
15

63. sin θ = − 2
3 , θ is in Quadrant

III
Answer. cos θ = −

√
5

3 ,
tan θ = 2

√
5

5 , csc θ = − 3
2 ,

sec θ = − 3
√

5
5 , cot θ =

√
5

2

64. cos θ = 3
5 , θ is in Quadrant IV

Answer. sin θ = − 4
5 ,

tan θ = − 4
3 , csc θ = − 5

4 ,
sec θ = 5

3 , cot θ = − 3
4

Exercise Group. Use the even and odd properties to evaluate the following
65. cos(−60◦)

Answer. 1
2

66. tan(−225◦)
Answer. −1

67. csc(−330◦)
Answer. 2
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68. sin(−90◦)
Answer. −1

69. cot(−300◦)
Answer.

√
3

3

70. sec(−150◦)
Answer. − 2

√
3

3

71. sin
(
− 11π

6
)

Answer. 1
2

72. tan
(
− 5π

4
)

Answer. −1
73. cos

(
− 4π

3
)

Answer. − 1
2

74. tan(−π)
Answer. 0

75. sec
(
− π

4
)

Answer.
√

2
76. csc

(
− 7π

6
)

Answer. 2

Exercise Group. The Makali‘i is sailing along the Kohala Coast, maintaining
a distance of two nautical miles from the shore. An observer at Mahukona is
monitoring Makali‘i’s passage. Let d denote the length of the line connecting
Makali‘i to the Mahukona observer. Given θ as the angle formed between d and
the shore, determine Makali‘i’s distance, d, from the observer for each value of
θ, rounded to one decimal place.

Mahukona

d

2
m

ile
s

θ

77. θ = 30◦

Answer. 4
NM

78. θ = 45◦

Answer. 2.8
NM

79. θ = 60◦

Answer. 2.3
NM

80. θ = 90◦

Answer. 2
NM

81. θ = 120◦

Answer. 2.3
NM

82. θ = 135◦

Answer. 2.8
NM

83. θ = 150◦

Answer. 4
NM



Chapter 2

Graphs of the Trigonometric
Functions

2.1 Graphs of the Sine and Cosine Functions
Sunrise and sunset are vital markers for navigational orientation and course
corrections. During sunrise, you can determine the direction and observe the
origin of wind and waves. As the sun rises higher, steering by the sun becomes
impractical, and you must instead depend on swells to keep your course. At
sunset, you can reassess your position and take note of any changes in wind
and swell patterns. Although the general pattern is for the sun to rise in the
east and set in the west, its exact position on the horizon, known as solar
declination, varies throughout the year.

To understand why the position changes, we must first learn about Earth’s
axial tilt, which represents the angle between the Earth’s rotational axis and
its orbital plane around the Sun. To conceptualize this tilt, envision a pole
passing through the Earth’s center, extending from the North to South Pole,
with the Earth revolving around this axis. Each complete rotation of the Earth
on this axis corresponds to one day. As the Earth travels along its orbit around
the Sun with a constant tilt, the orientation of the Earth’s axial tilt causes
either the North Pole or the South Pole to tilt toward the Sun. This tilt varies
depending on the Earth’s location in its orbit relative to the Sun.

During the equinoxes, which mark the transition from winter to spring and
from summer to fall, the Earth’s axis is not tilted towards or away from the
Sun. Consequently, on these days, the Sun rises due east and sets due west,
and the duration of day and night is approximately equal.

Following the fall equinox in the Southern Hemisphere, typically occurring
around March 20th, the Earth proceeds along its orbit around the Sun, leading
the Southern Hemisphere to tilt away from the Sun. As a result, the Sun’s rising
position progressively moves northward each day. By the time of the winter
solstice, around June 20th, the Sun rises from its northernmost position,
resulting in the shortest day in the Southern Hemisphere and the longest day
of the year in the Northern Hemisphere.

After the winter solstice, the Earth’s axial tilt remains the same, but the
Southern Hemisphere starts tilting toward the Sun. This causes the Sun’s rising
position to gradually shift southward each day. When the spring equinox
arrives, approximately on September 22nd, the Sun rises due east once again,
and day and night are once more of equal duration.

As the Southern Hemisphere continues to tilt towards the Sun, the Sun’s

88



CHAPTER 2. GRAPHS OF THE TRIGONOMETRIC FUNCTIONS 89

rising position moves even further south each day. By the time of the summer
solstice, approximately on December 21st, the Sun rises from its southernmost
position, resulting in the longest day of the year in the Southern Hemisphere
and the shortest day in the Northern Hemisphere.

Following the summer solstice, the Southern Hemisphere begins tilting away
from the Sun, causing the Sun’s rising position to gradually shift northward
each day. This movement continues until the next fall equinox, completing the
annual cycle.

June
Solstice

December
Solstice

September
Solstice

March
Solstice

Figure 2.1.1 Illustration shows the relative positions and timing of solstice,
equinox and seasons in relation to the Earth’s orbit around the Sun and the
axial tilt. During the June solstice, the northern hemisphere is tilted towards
the Sun, while the southern hemisphere is tilted away. Conversely, during the
December solstice, the southern hemisphere is tilted towards the Sun, and the
northern hemisphere is tilted away. During the March and September equinoxes,
the Earth’s axis is perpendicular to the line connecting the Earth to the Sun,
causing the Sun to appear directly above the equator. As a result, day and
night are approximately equal in length all over the world.

The position where the Sun rises throughout the year exhibits a repeating
pattern, characterized as a periodic function with a cycle of about one year.
This function can be mathematically represented as either a sine or cosine
function. Graphically, it illustrates the sunrise position on the horizon relative
to the east (Hikina) as time progresses. By examining this function, we can
observe the gradual northward and southward movement of the sunrise position
throughout the year. Key dates such as the equinoxes and solstices mark
significant points in this pattern, providing insights into the changing seasons
and variations in daylight hours.

In this section, we will explore the periodic nature of sine and cosine
functions and study their transformations. Studying the graphs of sine and
cosine functions provides valuable insights into the world around us. The graphs
of the remaining trigonometric functions will be covered in Section 2.2.
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2.1.1 Domain and Range of Sine and Cosine
The domains for sin(θ) and cos(θ) consist of the set of the inputs of the functions.
Since any angle θ can be input into sine and cosine and still have these functions
defined, the domain for both sine and coseine is all real numbers. Recall that
in Section 1.3, if P (x, y) is any point on the unit circle that corresponds to the
angle θ, we defined sin θ = y and cos θ = x. Given the constraints on the unit
circle, −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1, and thus

−1 ≤ sin θ ≤ 1, and − 1 ≤ cos θ ≤ 1.

Since the range of a function consists of all its outputs, we conclude that the
range of both the sine and cosine functions spans all real numbers between -1
and 1.
Remark 2.1.2 Domain and Range for the Sine and Cosine Functions.
Table 2.1.3 summarizes the domains and ranges for the sine and cosine functions.

Table 2.1.3 Domains and Ranges of Sine and Cosine

Function Domain Range

sin θ All real numbers, (−∞, ∞) All real numbers from -1 to 1, [−1, 1]

cos θ All real numbers, (−∞, ∞) All real numbers from -1 to 1, [−1, 1]

2.1.2 The Sine Function
Convention 2.1.4 In Chapter 1, trigonometric functions typically use θ or
t as the variable in the domain, such as y = cos θ and y = sin t. However,
when graphing functions on the Cartesian plane (xy-coordinate system), x is
conventionally used as the variable in the domain. Therefore, when graphing
trigonometric functions, we will use x as the variable, for example y = cos x
and y = sin x.

The sine function, as discussed in Subsection 1.5.4, is a periodic functions
with period 2π. To graph y = sin x, we can focus on the interval [0, 2π]. By
plotting this interval, we can then repeat the values over the entire domain to
complete the remaining graph.

Recall from Definition 1.3.2 that on the unit circle, sin θ is defined to be
the y-value of the terminal point P (x, y) on the unit circle associated with the
angle θ. As the angle increases from 0 to π

2 , the y-value also increases from
0 to 1. When the angle continues from π

2 to 3π
2 , the y-value decreases from 1

to −1. Finally, as the angle approaches 2π, the y-value increases to 0. This
behavior is shown in Figure 2.1.5.
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Figure 2.1.5 As θ moves from 0◦ to 360◦, this figure plots the values of
y = sin θ. Move the slider for θ to see how changing the angle affects sin θ.
Note that while we will generally be using radians when graphing trigonometric
functions, this figure uses degrees to help visualize the angle. For example, you
may not be aware that 2 radians (≈ 114.6◦) lies in Quadrant II.

Next we recall known values for the sine function listed on Table 2.1.6.
Table 2.1.6 Values for y = sin x

x sin x (x, y) x sin x (x, y)
0 0 (0, 0) π 0 (π, 0)
π
6

1
2

(
π
6 , 1

2
) 7π

6 − 1
2

( 7π
6 , − 1

2
)

π
4

√
2

2

(
π
4 ,

√
2

2

)
5π
4 −

√
2

2

(
5π
4 , −

√
2

2

)
π
3

√
3

2

(
π
3 ,

√
3

2

)
4π
3 −

√
3

2

(
4π
3 , −

√
3

2

)
π
2 1

(
π
2 , 1

) 3π
2 −1

( 3π
2 , −1

)
2π
3

√
3

2

(
2π
3 ,

√
3

2

)
5π
3 −

√
3

2

(
5π
3 , −

√
3

2

)
3π
4

√
2

2

(
3π
4 ,

√
2

2

)
7π
4 −

√
2

2

(
7π
4 , −

√
2

2

)
5π
6

1
2

( 5π
6 , 1

2
) 11π

6 − 1
2

( 11π
6 , − 1

2
)

2π 0 (2π, 0)

Now that we have a visual understanding of the graph for y = sin x, we can
utilize the data from Table 2.1.6 to map out the points. This process enables
us to construct the graph illustrated in Figure 2.1.7, representing one complete
period of the sine function.
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π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

−0.5

0.5

1

y = sin x

x

y

Figure 2.1.7 The values in Table 2.1.6 plotted on a graph with a smooth curve
connecting the points to make the curve for y = sin(x).

Since the graph in Figure 2.1.7 represents one period, we can now complete
the graph of y = sin x by extending the pattern in both directions to obtain
Figure 2.1.8.

−2π −π π 2π 3π

−1

−0.5

0.5

1
y = sin x

x

y

Figure 2.1.8 The plot for y = sin(x).
Notice the graph of the sine function’s symmetry with respect to the origin,

a characteristic supported in Section 1.5.7, where we learned that sine is an
odd function.
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2.1.3 The Cosine Function
Similarly, we can construct a plot for the cosine function, shown in Figure 2.1.9.

Figure 2.1.9 As θ moves from 0◦ to 360◦, this figure plots the values of
y = cos θ. Move the slider for θ to see how changing the angle affects cos θ.
Note that while we will generally be using radians when graphing trigonometric
functions, this figure uses degrees to help visualize the angle.

By plotting points for y = cos x and using the fact that the cosine function
is periodic, we obtain the graph for cosine over the entire domain. This is
shown in Figure 2.1.10.

−2π −π π 2π 3π

−1

−0.5

0.5

1 y = cos x

x

y

Figure 2.1.10 The plot for y = cos(x).
In alignment with Section 1.5.7, observe that the graph of cosine is symmetric

about the y-axis, confirming that it is an even function.

Definition 2.1.11 The graphs for the sine and cosine functions are commonly
referred to as sinusoidal graphs or sinus curves. ♢

2.1.4 Graphing Transformations of Sine and Cosine
Now that we’ve become familiar with the graphs of the sine and cosine functions,
let’s apply algebraic graphing techniques to these functions. Recall that when
D > 0, the graph of y = f(x) + D shifts the graph of y = f(x) upward by D
units, and the graph of y = f(x) − D shifts the graph of y = f(x) downward
by D units.
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Definition 2.1.12 Vertical Shift. The graphs of the functions

y = sin x + D and y = cos x + D

represent an upward vertical shift of the graphs y = sin(x) and y = cos(x)
by D units, respectively.

Similarly, the functions

y = sin x − D and y = cos x − D

depict the graphs of y = sin(x) and y = cos(x) with a downward vertical
shift by D units, respectively. ♢

Example 2.1.13 Vertical Shifts. Graph each function

1. y = sin(x) + 2

2. y = cos(x) − 1

Solution.

1.

−2π −π π 2π 3π

−1

1

2

3

y = sin x

y = sin(x) + 2

x

y

Figure 2.1.14 The graph of y = sin(x) + 2 is the same as the graph of
y = sin(x) but shifted up by 2 units.
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2.

−2π −π π 2π 3π

−2

−1

1

y = cos x

y = cos(x) − 1

x

y

Figure 2.1.15 The graph of y = cos(x) − 1 is the same as the graph of
y = cos(x) but shifted down by 1 unit.

□
Additionally, remember that the graph y = −f(x) reflects the graph of

y = f(x) about the x-axis.

Definition 2.1.16 Reflection about the x-axis. The functions

y = − sin x and y = − cos x

represent the graphs of y = sin(x) and y = cos(x) with a reflection about
the x-axis, respectively. ♢

Example 2.1.17 Reflections about the x-axis. Graph y = − cos(x)
Solution.

−2π −π π 2π 3π

−1

1

y = cos x

y = − cos(x)

x

y

Figure 2.1.18 The graph y = − cos(x) is obtained by multiplying every y−value
of the y = cos(x) graph by −1. This transformation reflects all points across
the x-axis, turning positive values negative and negative values positive.

□
Similarly, recall that the graph of y = f(−x) reflects the graph of y = f(x)
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about the y-axis.

Definition 2.1.19 Reflection about the y-axis. The functions

y = sin(−x) and y = cos(−x)

represent the graphs of y = sin(x) and y = cos(x) with a reflection about
the y-axis, respectively. ♢

Example 2.1.20 Reflections about the y-axis. Graph y = sin(−x) + 1
Solution.

−2π −π π 2π 3π

1

2

y = sin(x) + 1

y = sin(−x) + 1

x

y

Figure 2.1.21 The graph y = sin(−x) + 1 is obtained by reflecting the graph
of y = sin(x) about the y-axis and then vertically shifting it upward by 1. This
transformation turns positive values of x negative and negative values positive,
and increases every y-value by 1.

□

Example 2.1.22 Vertical Stretches and Compressions. Graph each
function

1. y = 2 cos(x)

2. y = 1
2 cos(x)

Solution.
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−2π −π π 2π 3π

−2

−1

1

2

y = cos x

y = 2 cos x

y = 1
2 cos x

x

y

Figure 2.1.23 The graph of y = 2 cos(x) is achieved by vertically stretching
the y-values of y = cos(x) by a factor of 2. Similarly, the graph of y = 1

2 cos(x)
is obtained by vertically compressing the y-values of y = cos(x) by a factor of
1
2 .

□
The factor multiplied at the front of the cosine function plays a crucial

role in stretching and compressing the graph. This factor is known as the
amplitude, measuring the maximum vertical distance from the midline to
the peak or trough of a sinusoidal wave. In Example 2.1.22, the amplitude of
y = 2 cos(x) is 2, indicating a vertical stretch by a factor of 2 compared to
the standard cosine function. Conversely, for y = 1

2 cos(x), the amplitude is 1
2 ,

which represented a vertical compression by a factor of 1
2 .

Definition 2.1.24 Amplitude. For a sinusoidal function, the amplitude,
, denoted as |A|, is the height of the function, representing half the distance
between its maximum and minimum values:

|A| = amplitude = maximum − minimum
2 .

In other words, the amplitude is the vertical distance from the midline to
the maximum or minimum value of the function. The midline is a horizontal
line representing the average value of the function. It can be calculated by:

y = maximum + minimum
2 .

For a graph centered about the x-axis, the amplitude is simply the maximum
value of the function.

In general, for

y = A · sin(x) or y = A · cos(x),

the amplitude is given by |A|. This absolute value ensures that amplitude is
always a positive value, representing the magnitude of the vertical stretching or
compression. ♢
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Definition 2.1.25 Vertical Strech/Compression. The functions

y = A sin x and y = A cos x

represents a sine and consine function, respectively with an amplitude of |A|.
The amplitude determines the vertical stretch or compression of the graph.

If |A| > 1, the graph undergoes a vertical stretch, making the peaks and
troughs higher.

If 0 < |A| < 1, the graph undergoes a vertical compression, reducing the
distance between the peaks and troughs. ♢

Example 2.1.26 Graph y = −4 sin x and identify the amplitude.
Solution. The amplitude is | − 4| = 4.

−2π −π π 2π 3π

−4

−1

1

2

3

4

y = sin x

y = −4 sin x

x

y

Figure 2.1.27 Since the amplitude of y = −4 sin(x) is 4, the graph is stretched
by a factor of 4 and will oscillate between −4 and 4. Additionally, the negative
sign indicates that the graph is reflected about the x-axis.

□
Next we will look at functions of the form

y = sin Bx and y = cos Bx

You may recall from algebra that for functions of the form y = f(Bx), a key
factor emerges: when |B| > 1, the graph undergoes horizontal compression by a
factor of 1

|B| ; conversely, when 0 < |B| < 1, the graph is horizontally stretched
by a factor of 1

|B| . Given that sine and cosine complete one period in 2π, the
horizontal stretching or compressing of a period will be by a factor of 1

|B| .

Definition 2.1.28 Period. For sine and cosine functions of the form

y = sin Bx and y = cos Bx

the period is defined as
period = 2π

|B|
Thus, if |B| > 1, the period is compressed; if 0 < |B| < 1, the period is

stretched. ♢
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Definition 2.1.29 Horizontal Strech/Compression. The graphs functions

y = sin Bx and y = cos Bx,

undergo a horizontal stretch or compression by a value of 1
|B| .

If |B| > 1, the graph undergoes a horizontal compression, making the period
shorter.

If 0 < |B| < 1, the graph undergoes a horizontal stretch, making the period
longer. ♢

Example 2.1.30 Horizontal Stretches and Compressions. Identify the
period and graph one period for each of the following functions:

1. y = sin(2x)

2. y = sin
(

1
2x

)

3. y = sin
(

1
3x

)
Solution.

1. The period for y = sin(2x) is

period = 2π

2 = π

2. The period for y = sin
( 1

2 x
)

is

period = 2π
1
2

= 2π · 2
1 = 4π

3. The period for y = sin
( 1

3 x
)

is

period = 2π
1
3

= 2π · 3
1 = 6π
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π 2π 3π 4π 5π 6π

−1

1
y = sin x

y = sin 2x y = sin 1
2 x y = sin 1

3 x

x

y

Figure 2.1.31 One period each of y = sin(2x), y = sin
( 1

2 x
)
, and y = sin

( 1
3 x

)
compared to the standard y = sin(x) graph. Observe the distinct effects of
horizontal compression (when B = 2, reducing the period to π

2 ) and stretching
(when B = 1

2 and B = 1
3 , increasing the period to 4π and 6π, respectively).

□
Our final transformation involves functions of the form y = f(x − c). When

c > 0, the graph of y = f(x) is shifted c units to the right; when c < 0, it is
shifted |c| units to the left.

Definition 2.1.32 Phase Shift. The functions

y = sin(B(x − C)) and y = cos(B(x − C)) (2.1.1)

undergo a horizontal shift, known as phase shift, of C units. If C > 0, the
phase shift is to the right; if C < 0, it is to the left. ♢

Remark 2.1.33 Functions of the form y = sin(Bx−E) and y = cos(Bx−
E). Note that you may see functions written in the form

y = sin(Bx − E) and y = cos(Bx − E). (2.1.2)

There is a subtle yet important difference between (2.1.1) and (2.1.2). In
(2.1.1), the term B, affecting the period, is multiplied by both x and C, the
phase shift. In (2.1.2), B is only multiplied by x. We can rewrite (2.1.2) by
factoring out B as

y = sin
(

B

(
x − E

B

))
and y = cos

(
B

(
x − E

B

))
.

This form aligns with (2.1.1). Therefore, for equations of the form

y = sin(Bx − E) and y = cos(Bx − E)

the phase shift is E
B units.
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Example 2.1.34 Phase Shift. Identify the period and phase shift of each
function, and graph the function

1. y = cos(x − π)

2. y = sin
(π

6 (x + 2)
)

Solution.

1. Since this equation is of the form y = cos(Bx − E), we have B = 1 and
E = π. Therefore,

period = 2π

|B|
= 2π

1 = 2π

and

phase shift = E

B
= π

1 = π (positive value indicates a shift to the right).

A positive value for the phase shift indicates a shift to the right. It’s
important to note that, given B = 1, the phase shift is simply E = π.

−2π −π π 2π 3π 4π

−1

1

y = cos x y = cos(x − π)

π

x

y

Figure 2.1.35 The graph of y = cos(x − π) is the graph of y = cos x with
a phase shift of π units to the right.

2. Since the given equation is in the form y = sin
(

π
6 (x + 2)

)
, we can identify

B = π
6 and C = −2. Consequently,

period = 2π

|B|
= 2π

π
6

= 2π · 6
π

= 12

and

phase shift = C = −2.
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The negative sign indicates a phase shift to the left by 2 units.
To graph y = sin

(
π
6 (x + 2)

)
, begin by graphing the sine function y =

sin
(

π
6 x

)
with a period of 12. Then, apply a phase shift of 2 units to the

left on the resulting graph.

−6 −4 −2 2 4 6 8 10 12

−1

1
y = sin x

y = sin
(

π
6 x

)

period=2π ≈ 6.28

period=12

x

y

Figure 2.1.36 The graph of y = sin
(

π
6 x

)
represents the sine function

y = sin x with a horizontal stretch, resulting in a period of 12.

−6 −4 −2 2 4 6 8 10 12

−1

1

y = sin
(

π
6 x

)
y = sin

(
π
6 (x + 2)

)

2

x

y

Figure 2.1.37 Shifting the graph of y = sin
(

π
6 x

)
2 units to the left

results in the graph of y = sin
(

π
6 (x + 2)

)
.

□



CHAPTER 2. GRAPHS OF THE TRIGONOMETRIC FUNCTIONS 103

We will now summarize the transformations by consolidating them into a
single equation.

Remark 2.1.38 Transformations of Sine and Cosine. When dealing
with functions in the form

y = A · sin(B(x − C)) + D and y = A · cos(B(x − C)) + D

we can express the transformations as follows:

• Amplitude and Vertical Compression/Stretch: |A|

◦ |A| is the value of the amplitude.
◦ If |A| > 1, there is vertical stretching.
◦ If 0 < |A| < 1, there is vertical compression.

• Period and Horizontal Stretch/Compression: |B|

◦ The period is 2π
|B| .

◦ If |B| > 1, there is horizontal compression and the period is short-
ened.

◦ If 0 < |B| < 1, there is horizontal stretching and the period is
lengthened.

• Phase Shift: C

◦ If C is positive, there is a shift to the right.
◦ If C is negative, there is a shift to the left.

• Vertical Shift: D

◦ If D is positive, there is a shift upward.
◦ If D is negative, there is a shift downward.

• Reflection about the x-axis:

◦ If A is negative (A < 0), there is a reflection about the x-axis.

• Reflection about the y-axis:

◦ If B is negative (B < 0), there is a reflection about the y-axis.

Remark 2.1.39 Transformations of the form y = A · sin(Bx − E) + D
and y = A · cos(Bx − E) + D. For functions of the form

y = A · sin(Bx − E) + D and y = A · cos(Bx − E) + D

the transformations are the same as above, except for the phase shift where
you replace C with E

B . If E
B < 0 the phase shift is to the right, and if E

B > 0 it
is to the left.

Explore the effects of various transformations using the interactive features
in Figure 2.1.40.
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Figure 2.1.40 Manipulate the graphs of sine and cosine by adjusting the
sliders for A, B, C, and D. Observe the effects on amplitude, period, phase and
vertical shifts, as well as reflections about the x- and y-axes. Additionally, you
can toggle between the sine and cosine graphs by selecting the corresponding
function.

2.1.5 Exercises

Exercise Group. Graph the function.
1. y = sin(x) − 3

Answer.

−2π −π π 2π 3π

−5

−4

−3

−2

−1

1

y = sin(x) − 3

x

y

2. y = −2 sin(x)
Answer.

−2π −π π 2π 3π

−2

−1

1

2
y = −2 sin(x)

x

y

3. y = 4 cos(x)
Answer.

−2π −π π 2π 3π

−4

−3

−2

−1

1

2

3

4

y = 4 cos(x)

x

y

4. y = cos(x) + 1
Answer.

−2π −π π 2π 3π

1

2 y = cos(x) + 1

x

y

5. y = 1
2 sin(x)

Answer.

−2π −π π 2π 3π

−1

−0.5

0.5

1

y = 1
2 sin(x)

x

y

6. y = 5 cos(x)
Answer.

−2π −π π 2π 3π

−6
−5
−4
−3
−2
−1

1
2
3
4
5
6

y = 5 cos(x)

x

y
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7. y = sin(x) + 2
Answer.

−2π −π π 2π 3π

1

2

3

4

y = sin(x) + 2

x

y

8. y = −4 cos(x) − 2
Answer.

−2π −π π 2π 3π

−6

−5

−4

−3

−2

−1

1

2

3
y = −4 cos(x) − 2

x

y

9. y = −3 sin(x) + 2
Answer.

−2π −π π 2π 3π

−2

−1

1

2

3

4

5

6
y = −3 sin(x) + 2

x

y

10. y = 4 cos(x) − 1
Answer.

−2π −π π 2π 3π

−5

−4

−3

−2

−1

1

2

3

4
y = 4 cos(x) − 1

x

y

11. y = 2 sin(x) − 4
Answer.

−2π −π π 2π 3π

−6

−5

−4

−3

−2

−1

1

y = 2 sin(x) − 4

x

y

12. y = − 1
2 cos(x) − 1

Answer.

−2π −π π 2π 3π

−2

−1

1

y = − 1
2 cos(x) − 1

x

y

Exercise Group. Determine the amplitude and period for each function,
and sketch the graph.

13. y = −2 sin(3x)
Answer. Amplitude: 2;
Period: 2π

3 ;

−π − 2π
3

− π
3

π
3

2π
3

π 4π
3

5π
3

2π

−2

−1

1

2

y = −2 sin(3x)

x

y

14. y = 3 cos
(

π
4 x

)
Answer. Amplitude: 3;
Period: 8;

−6 −4 −2 2 4 6 8 10

−3

−2

−1

1

2

3

y = 3 cos
(

π
4 x

)

x

y
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15. y = 1
2 sin

(
π
6 x

)
Answer. Amplitude: 1

2 ;
Period: 12;

−6 −4 −2 2 4 6 8 10 12 14 16 18

−1.5

−1

−0.5

0.5

1

1.5

y = 1
2 sin

(
π
6 x

)
x

y

16. y = −4 cos(2x)
Answer. Amplitude: 4;
Period: π;

−2π −π π 2π 3π

−4

−3

−2

−1

1

2

3

4
y = −4 cos(2x)

x

y

17. y = − 2
3 sin

(
π
2 x

)
Answer. Amplitude: 2

3 ;
Period: 4;

−4 −2 2 4 6 8

−1

− 2
3

− 1
3

1
3

2
3

1

y = − 2
3 sin

(
π
2 x

)

x

y

18. y = 5
4 cos

(
π
3 x

)
Answer. Amplitude: 5

4 ;
Period: 6;

−6 −2 2 6 10

− 5
4

− 3
4

− 1
4

1
4

3
4

5
4

y = 5
4 cos

(
π
3 x

)

x

y

19. y = 2
7 sin( 1

2 x)
Answer. Amplitude: 2

7 ;
Period: 4π;

−2π −π π 2π 3π 4π

− 1
2

− 2
7

2
7

1
2

y = 2
7 sin( 1

2 x)

x

y

20. y = − 3
5 cos

(
π
8 x

)
Answer. Amplitude: 3

5 ;
Period: 16;

−8 −4 4 8 12 16 20 24

−1

− 3
5

3
5

1

y = − 3
5 cos

(
π
8 x

)

x

y

Exercise Group. Match the given function to one of the graphs below.

−π − π
2

π
2

π 3π
2

2π 5π
2

3π

−3

−2

−1

1

2

3
(A)

x

y

−π − π
2

π
2

π 3π
2

2π 5π
2

3π

−3

−2

−1

1

2

3
(B)

x

y
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−π − π
2

π
2

π 3π
2

2π 5π
2

3π

−3

−2

−1

1

2

3
(C)

x

y

−π − π
2

π
2

π 3π
2

2π 5π
2

3π

−3

−2

−1

1

2

3
(D)

x

y

−π − π
2

π
2

π 3π
2

2π 5π
2

3π

−3

−2

−1

1

2

3
(E)

x

y

−π − π
2

π
2

π 3π
2

2π 5π
2

3π

−3

−2

−1

1

2

3
(F)

x

y

21. y = 2 sin(x) + 1
Answer. D

22. y = 3 cos(4x)
Answer. E

23. y = −2 sin(2x)
Answer. B

24. y = 3 sin
( 1

2 x
)

Answer. A
25. y = − cos

(
x − π

4
)

Answer. C
26. y = cos

( 1
2 x

)
− 1

Answer. F

Exercise Group. Find the amplitude, period, phase shift, and vertical shift
of each function and sketch the graph.

27. y = 3
4 sin

(
π
3 (x − 2)

)
Answer. Amplitude: 3

4 ;
Period: 6; Phase Shift: 2;
Vertical Shift: 0

−3 −2 −1 1 2 3 4 5 6 7 8

−1

−0.5

0.5

1
y = 3

4 sin
(

π
3 (x − 2)

)

x

y

28. y = −2 cos
(

π
2

(
x − 1

2
))

Answer. Amplitude: 2;
Period: 1; Phase Shift: 0.5;
Vertical Shift: 0

−3 −2 −1 1 2 3 4 5 6 7 8

−2

−1

1

2
y = −2 cos

(
π
2

(
x − 1

2
))

x

y
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29. y = 2 sin (3x − π)
Answer. Amplitude: 2;
Period: 2π

3 ; Phase Shift: π
3 ;

Vertical Shift: 0

− 2π
3

− π
3

π
3

2π
3

π

−2

−1

1

2

y = 2 sin (3x − π)

x

y

30. y = −3 cos
(
2x + π

3
)

Answer. Amplitude: 2;
Period: π; Phase Shift: − π

6 ;
Vertical Shift: 0

−π − 2π
3

− π
3

π
3

2π
3

π

−3

−2

−1

1

2

3
y = −3 cos

(
2x + π

3
)

x

y

31. y = 1
2 sin

(
π(x − 1) + 3

2
)

Answer. Amplitude: 1
2 ;

Period: 2; Phase Shift: 1;
Vertical Shift: 3

2

−2 −1 1 2 3 4

0.5

1

1.5

2

2.5

y = 1
2 sin (π(x − 1)) + 3

2

x

y

32. y = 3 cos
(

π
4 (x + 2)

)
− 2

Answer. Amplitude: 1
2 ;

Period: 8; Phase Shift: −2;
Vertical Shift: −2

−4 −2 2 4 6 8 10 12 14

−5

−4

−3

−2

−1

1
y = 3 cos

(
π
4 (x + 2)

)
− 2

x

y

33. y = − 2
3 sin

(
2x − π

3
)

+ 2
3

Answer. Amplitude: 2
3 ;

Period: 8; Phase Shift: π
6 ;

Vertical Shift: 2
3

π
3 − π

6
π
6

π
3

π
2

2π
3

5π
6

π 7π
6

4π
3

1
3

2
3

1

4
3

5
3

y = − 2
3 sin

(
2x − π

3
)

+ 2
3

x

y

34. y = 5
3 cos

( 4π
5 (x + 2)

)
Answer. Amplitude: 5

3 ;
Period: 2.5; Phase Shift: −2;
Vertical Shift: 0

−2 −1 1 2 3

-2

-1

1

2

y = 5
3 cos

( 4π
5 (x + 2)

)

x

y
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35. y = − sin
( 1

2 x − π
4

)
− 1

Answer. Amplitude: 1;
Period: 4π; Phase Shift: π

2 ;
Vertical Shift: −1

−π π 2π 3π 4π 5π 6π

−2

−1.5

−1

−0.5

y = − sin
( 1

2 x − π
4 )

)
− 1 xy

36. y = 4 cos
( 1

2
(
x + 2π

3
))

+ 3
Answer. Amplitude: 4;
Period: 4π; Phase Shift: − 2π

3 ;
Vertical Shift: 3

−π π 2π 3π 4π 5π 6π
−1

1
2
3
4
5
6
7

y = 4 cos
( 1

2
(
x + 2π

3
))

+ 3

x

y

Solar Declination. At the start of this section, we explored the effects
of axial tilt on Earth’s seasons, considering the sun’s declination—the angle
between the equator and a line drawn from the center of the Earth to the center
of the Sun. When observing the sunrise, the sun’s declination is the angle from
the sunrise to due east.

During the June Solstice, the declination is δ = 23.45◦, causing the sun to
rise 23.45◦ to the north of east. On the December Solstice, the declination is
δ = −23.45◦, resulting in the sun rising 23.45◦ to the south of east.

Conversely, during the spring and fall equinox when the declination is
δ = 0◦, the sun rises precisely at due east. This period holds significant
historical importance, as observers, both in the past and present, have utilized
this time to precisely determine the eastward direction from their positions.
This practice is widespread across various cultures, with individuals using the
equinox to establish directional markers. Homes, ceremonial sites, and other
notable locations are often intentionally oriented based on the equinox.

In terms of navigation, knowing the solar declination angle for a specific
time of year allows observers to measure the same angle down or up from where
the sun rose during sunrise, thereby determining the direction of east.

To approximate the solar declination angle δ in degrees, we can use the
following equation derived in [2.1.6.1]

δ = −23.45◦ · cos
(

360
365 · (N + 10)

)
where N represents the day of the year, with January 1 denoted as N = 1, and
December 31 as N = 365.

For each of the following problems, calculate the solar declination for the
given day, assuming a 365-day year. Round your answer to two decimals.

37. March 22nd (81st day of the
year).
Answer. δ = −0.10◦

38. June 21st (172nd day of the
year).
Answer. δ = 23.45◦

39. September 21st (264th day of
the year).
Answer. δ = −0.10◦

40. December 21st (355th day of
the year).
Answer. δ = −23.45◦

41. April 1st (91st day of the
year).
Answer. δ = 3.92◦

42. September 3rd (246th day of
the year).
Answer. δ = 7.05◦

43. May 28th (148th day of the
year).
Answer. δ = 21.40◦

44. November 23rd (327th day of
the year).
Answer. δ = −20.8◦
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45. What are significant about
March 22nd, June 21st,
September 21st, and
December 21st?
Answer. They are the
equinoxes and soltices.

46. Graph the solar declination
angle over time. Use the
horizontal axis for N , the day
of the year, and the vertical
axis for δ, representing the
solar declination angle in
degrees.
Answer.

100 200 300

−20

−10

10

20

N

δ

Rough Seas. Wave heights, defined as the vertical distance between the
crest and the trough of a wave, can vary in the open ocean. However, the
height of the wave alone does not necessarily indicate a calm or choppy sailing
conditions. Another important factor is the wave period, representing the
time between waves, which affects the smoothness of sailing. For each given
equation, where w(t) is the number of feet the wave is above the mean sea level
at t seconds, calculate: a) the wave heigh; b) the wave period; c) Plot the wave
height for two periods.

Wave Height

Peak
Trough

47. w(t) = 4 cos
(

π
8 t

)
Answer. a) 8 feet; b) 16 seconds
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10 20 30 40

−10

−5

5

10

t

w

48. w(t) = 9 cos
(

π
8 t

)
Answer. a) 18 feet; b) 16 seconds

10 20 30 40

−10

−5

5

10

t

w

49. w(t) = 4 cos
(

π
4 t

)
Answer. a) 18 feet; b) 8 seconds
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10 20 30 40

−10

−5

5

10

t

w

50. Which of the three waves above would give the smoothest sailing?
Answer. w(t) = 4 cos

(
π
8 t

)

2.1.6 References
[1] A. E. Dixon and J. D. Leslie, Solar Energy Conversio, Pergamon; (1979)
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2.2 Graphs of Other Trigonometric Functions
This section explores the graphs of tangent, cotangent, cosecant, and secant,
including their periodic behaviors and transformations.

2.2.1 Domains of the Tangent and Cotangent Functions
Recall the Quotient Identity for tangent (Definition 1.4.3):

tan x = sin x

cos x

Issues arise when the denominator is zero, i.e., when cos x = 0. This leads
to undefined points at x = . . . , − 3π

2 , − π
2 , π

2 , 3π
2 , 5π

2 , . . .. In general, any angle of
the form n π

2 , where n is an odd integer, should be excluded from the domain
since tangent is undefined at these values.

Similarly, we defined the cotangent function as

cot x = cos x

sin x

The denominator becomes zero when sin x = 0, corresponding to x =
. . . , −π, 0, π, 2π, . . .. In general, cot x is undefined for angles of the form nπ,
where n is an integer. These angles should be excluded from the domain of
cotangent.

Remark 2.2.1 Domains for Tangent and Cotangent. The domains for
tangent and cotangent functions are given in Table 2.2.2

Table 2.2.2 Domains of the tangent and cotangent functions

Function Domain

tan θ All real numbers except odd multiples of π
2 (90◦)

cot θ All real numbers except integer multiples of π (180◦)

2.2.2 Ranges of the Tangent and Cotangent Functions
To determine the range of the tangent function, consider the point P (x, y) on
the unit circle corresponding to the angle θ, and let a be a real number such
that a = tan θ = y

x .
Multiplying both sides by x, we obtain:

y = ax

Squaring both sides yields:

y2 = a2x2

Substituting into the Pythagorean Identity (Definition 1.5.20), we have:

1 = x2 + y2 = x2 + a2x2 = x2(1 + a2)

Dividing both sides by 1 + a2 and taking the square root gives:



CHAPTER 2. GRAPHS OF THE TRIGONOMETRIC FUNCTIONS 114

x = ± 1√
1 + a2

Similarly, we obtain:

y = ± a√
1 + a2

Thus, we conclude:

tan θ = y

x
=

a√
1+a2

1√
1+a2

= a

In other words, since a can be any real number and tan θ = a, the range
of the tangent function consists of all real numbers. A similar method can be
used to show that the range of the cotangent function is also the set of all real
numbers.
Remark 2.2.3 Ranges for Tangent and Cotangent. The ranges for
tangent and cotangent functions are given in Table 2.2.4

Table 2.2.4 Ranges of the tangent and cotangent functions

Function Range

tan θ All real numbers

cot θ All real numbers

2.2.3 Domains of the Cosecant and Secant Functions
Consider the Reciprocal Identity for the cosecant function (Definition 1.4.2):

csc x = 1
sin x

When sin x = 0, corresponding to x = . . . , −π, 0, π, 2π, . . ., the denominator
becomes zero. In general, csc x is undefined for angles of the form nπ, where n
is an integer, and these values should be excluded from the domain.

Similarly, since the cosecant function is defined as

sec x = 1
cos x

we see that sec x is undefined when cos x = 0. This occurs at x = . . . , − 3π
2 , − π

2 , π
2 , 3π

2 , 5π
2 , . . .,

and thus any angle of the general form n π
2 , where n is an odd integer, should

be excluded from the domain of sec x.
Remark 2.2.5 Domains for Cosecant and Secant. The domains for
cosecant and secant functions are given in Table 2.2.6
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Table 2.2.6 Domains of the trigonometric functions

Function Domain

csc θ All real numbers except integer multiples of π (180◦)

sec θ All real numbers except integer multiples of π
2 (90◦)

2.2.4 Ranges of the Cosecant and Secant Functions
If the angle is not an integer multiple of π, i.e. x ̸= nπ, where n is an integer,
then the Reciprocal Identity allows us to define cosecant as

csc x = 1
sin x

.

In Subsection 2.1.1, we learned that the function y = sin x has a range of

−1 ≤ sin x ≤ 1.

Therefore, taking the reciprocal of the range of sine, we get

csc x ≤ −1 or csc x ≥ 1.

In other words, the range of the cosecant function is all real numbers less than
or equal to −1 or greater than or equal to 1.

Similarly, since −1 ≤ cos x ≤ 1, we can get the range for the secant funcation
as

sec x ≤ −1 or sec x ≥ 1
or all real numbers less than or equal to −1 or greater than or equal to 1.

Remark 2.2.7 Ranges for Cosecant and Secant. The ranges for cosecant
and secant functions are given in Table 2.2.8

Table 2.2.8 Ranges of the cosecant and secant functions

Function Range

csc θ All real numbers greater than or equal to 1 or less than or equal to −1

sec θ All real numbers greater than or equal to 1 or less than or equal to −1

2.2.5 The Tangent Function
In Subsection 1.5.4, we learned that the tangent function is periodic with a
period of π. To graph y = tan x, we focus on plotting one period and then
repeat those values to complete the graph.

We also know that the domain of tangent includes all real numbers except
any angle of the form n π

2 , where n is an odd integer. These values are excluded
since tangent is undefined there. In fact, any line of the form x = n π

2 (e.g.
x = − π

2 and x = π
2 ) is a vertical asymptote

Knowing the location of the vertical asymptotes, we choose the interval(
− π

2 , π
2

)
to plot our points for tangent. This interval has a length of π (one
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period), allowing us to repeat the values to complete the graph of tangent over
the entire domain.

Recall from Definition 1.3.2 that on the unit circle, the expression tan θ = y
x

denotes the ratio of the y-coordinate to the x-coordinate of a point P (x, y)
associated with an angle θ. This ratio changes dynamically as θ varies from
zero to π

2 .
As θ approaches zero, the y-value tends to zero, and x approaches 1, resulting

in tan θ being a small fraction. Conversely, as θ approaches π
2 , the y-value

approaches 1, while x becomes extremely small and near zero. This causes
tan θ to evaluate as a fraction divided by a very small number, producing a
large number. A similar effect occurs when θ is between − π

2 and zero, except
tan θ is negative in this range. This behavior is shown in Figure 2.2.9.

Figure 2.2.9 As θ moves from −90◦ to 90◦, this figure plots the values of
y = tan θ. Move the slider for θ to see how changing the angle affects tan θ.
Note that while we will generally be using radians when graphing trigonometric
functions, this figure uses degrees to help visualize the angle.

Next we recall values of tangent for known angles, which are listed in
Table 2.2.10 and plotted in Figure 2.2.11.

Table 2.2.10 Values for y = tan x

x tan x (x, y)
− π

3 −
√

3
(
− π

3 , −
√

3
)

− π
4 −1

(
− π

4 , −1
)

− π
6 −

√
3

3

(
− π

6 , −
√

3
3

)
0 0 (0, 0)
π
6

√
3

3

(
π
6 ,

√
3

3

)
π
4 1

(
π
4 , 1

)
π
3

√
3

(
π
3 ,

√
3
)
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− π
2 − π

3−
π
4−

π
6

π
6

π
4

π
3

π
2

−
√

3

−1
−

√
3

3

√
3

3

1

√
3 y = tan(x)

x

y

Figure 2.2.11 The values in Table 2.2.10 plotted on a graph with a smooth
curve connecting the points to make the curve for y = tan(x).

Notice the symmetrical nature of the tangent function’s graph with respect
to the origin, a feature explained in Section 1.5.7, where we learned that tangent
is an odd function.

Since the graph in Figure 2.2.11 represents one period, we can complete
the graph of y = tan x by extending the pattern in both directions to obtain
Figure 2.2.12.
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−2π −π π 2π

−2

2

x = − 5π
2

x = − 3π
2

y = − π
2

y = π
2

y = 3π
2

y = 5π
2

x

y

Figure 2.2.12 The plot for y = tan(x)

2.2.6 The Cotangent Function
The domain of the cotangent function is defined for all angles except those
of the form nπ, where n is an integer. These excluded values correspond to
vertical asymptotes. In fact, any line of the form x = nπ, where n is an integer,
serves as a vertical asymptote. Additionally, as we learned in Subsection 1.5.4,
the cotangent function has a period of π. We can construct a plot for it in a
manner similar to how we constructed the tangent function, as illustrated in
Figure 2.2.13.

Figure 2.2.13 As θ moves from 0◦ to 180◦, this figure plots the values of
y = cot θ. Move the slider for θ to see how changing the angle affects cot θ.
Note that while we will generally be using radians when graphing trigonometric
functions, this figure uses degrees to help visualize the angle.

Plotting points for y = cot x and using the fact that the cotangent function
is periodic, we obtain the graph for cotangent in Figure 2.2.14
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− 3π
2

− π
2

π
2

3π
2

5π
2

−2

2

x = −2π

x = −π

x = 0

x = π

x = 2π

x = 3π

x

y

Figure 2.2.14 The plot for y = cot(x).
The symmetry of the cotangent function about the origin is evident, con-

firming its nature as an odd function, as explained in Section 1.5.7.

2.2.7 The Cosecant Function
The cosecant function has vertical asymptotes at points nπ, where n is an
integer, corresponding to the values where the function is undefined. These
points are the same ones excluded from the domain of csc x. As discussed in
Subsection 1.5.4, the cosecant function has a period of 2π. Given this, we
choose to examine its behavior within one period, specifically from 0 to 2π,
since this interval spans one complete period of the cosecant function.

Consider the Reciprocal Identity for the cosecant function (Definition 1.4.2):

csc x = 1
sin x

.

As x approaches zero, sine decreases to zero, making cosecant approach positive
infinity. Increasing x towards π

2 , sin(x) increases to 1, and cosecant decreases
to 1. As x moves from π

2 to π, sine approaches zero, causing csc(x) to approach
infinity.

Similarly, for x > π nearing π, sin(x) becomes a small, negative number
near zero, resulting in csc(x) approaching negative infinity. As x increases to
3π
2 , sin(x) decreases to −1, and csc(x) increases to −1. Finally, from 3π

2 to
2π, sin(x) approaches a small negative number, causing cosecant to approach
negative infinity. This behavior is shown in Figure 2.2.15.
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Figure 2.2.15 As θ moves from 0◦ to 360◦, this figure plots the values of
y = sin x and y = csc θ. Move the slider for θ to see how changing the angle
affects csc θ. Note that while we will generally be using radians when graphing
trigonometric functions, this figure uses degrees to help visualize the angle.

Next we recall values of sine and cosecant for known angles, which are listed
in Table 2.2.16 and plotted in Figure 2.2.17.

Table 2.2.16 Values for y = csc x

x sin x csc x x sin x csc x

0 0 Undefined π 0 Undefined
π
6

1
2 2 7π

6 − 1
2 −2

π
4

√
2

2
√

2 5π
4 −

√
2

2 −
√

2
π
3

√
3

2
2

√
3

3
4π
3 −

√
3

2 − 2
√

3
3

π
2 1 1 3π

2 −1 −1
2π
3

√
3

2
2

√
3

3
5π
3 −

√
3

2 − 2
√

3
3

3π
4

√
2

2
√

2 7π
4 −

√
2

2 −
√

2
5π
6

1
2 2 11π

6 − 1
2 −2

2π 0 Undefined
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π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

1
2
3
4

y = sin(x)

y = csc(x)

x = 0 x = π x = 2π

x

y

Figure 2.2.17 The values in Table 2.2.16 plotted on a graph with a smooth
curve connecting the points to make the curve for y = csc(x).

Since the graph in Figure 2.2.17 represents one period, we can complete
the graph of y = csc x by extending the pattern in both directions to obtain
Figure 2.2.18.
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− 3π
2

− π
2

π
2

3π
2

5π
2

7π
2

−4

−2

2

4

y = sin(x)

y = csc(x)

x = −2π

x = −π

x = 0

x = π

x = 2π

x = 3π

x = 4π

x

y

Figure 2.2.18 The plot for y = sin(x) and y = csc(x).
Notice the graph of the cosecant function is symmetric with respect to the

origin, confirming what we learned in Section 1.5.7, that cosecant is an odd
function.

2.2.8 The Secant Function
As discussed earlier in this section, the secant function has a domain for all
real numbers except angles of n π

2 , where n is an integer. These excluded values
correspond to the vertical asymptotes of the secant function. With a period
of 2π, we can focus on the interval 0 to 2π. The construction of the secant
function plot follows a similar approach to that used for the cosecant function,
as illustrated in Figure 2.2.19.

Figure 2.2.19 As θ moves from 0◦ to 360◦, this figure plots the values of
y = cos x and y = sec θ. Move the slider for θ to see how changing the angle
affects sec θ. Note that while we will generally be using radians when graphing
trigonometric functions, this figure uses degrees to help visualize the angle.

Plotting points for y = sec x and using the fact that the secant function is
periodic, we obtain the graph for secant in Figure 2.2.20.
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−2π −π π 2π 3π

−4

−2

2

4

y = cos(x)

y = sec(x)
x = − 5π

2

x = − 3π
2

y = − π
2

y = π
2

y = 3π
2

y = 5π
2

y = 5π
2

x

y

Figure 2.2.20 The plot for y = cos(x) and y = sec(x).
Notice the graph of the secant function is symmetric about the y-axis, and

thus secant is an even function, confirming what we learned in Section 1.5.7.

2.2.9 Graphing Transformations of Other Trigonometric
Functions

Similar to the graphs of sine and cosine, the graphs of the other trigonometric
functions can undergo vertical stretching and compressing, horizontal stretching
and compressing, phase shifts, vertical shift transformations, and reflections
about the x- and y-axes. However, unlike the sine and cosine functions, there
is no amplitude for the other trigonometric functions. These transformations
are listed in Definition 2.2.21.
Definition 2.2.21 Transformations of the Tangent, Cotangent, Cose-
cant, and Secant Functions. For functions of the form

y = A · tan(B(x − C)) + D, y = A · cot(B(x − C)) + D,

y = A · csc(B(x − C)) + D, and y = A · sec(B(x − C)) + D,

we can express the transformations as follows:

• Vertical Compression/Stretch: |A|

◦ |A| is the value of the vertical stretch/compression.
◦ If |A| > 1, there is vertical stretching.
◦ If 0 < |A| < 1, there is vertical compression.

• Period and Horizontal Stretch/Compression: |B|

◦ The period is π
|B| for tangent and cotangent, and 2π

|B| for cosecant
and secant.
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◦ If |B| > 1, there is horizontal compression, and the period is short-
ened.

◦ If 0 < |B| < 1, there is horizontal stretching, and the period is
lengthened.

• Phase Shift: C

◦ If C is positive, there is a shift to the right.
◦ If C is negative, there is a shift to the left.

• Vertical Shift: D

◦ If D is positive, there is a shift upward.
◦ If D is negative, there is a shift downward.

• Reflection about the x-axis:

◦ If A is negative (A < 0), there is a reflection about the x-axis.

• Reflection about the y-axis:

◦ If B is negative (B < 0), there is a reflection about the y-axis.

• Vertical Asymptotes:

◦ For tangent and cotangent, vertical asymptotes occur at

x = C + π

|B|
n,

where n is an integer.
◦ For cosecant and secant, vertical asymptotes occur at

x = C + π

2|B|
n,

where n is an integer.

♢

Remark 2.2.22 Other Forms of Transformations. For functions of the
form

y = A · tan(Bx − E) + D, y = A · cot(Bx − E) + D,

y = A · csc(Bx − E) + D, and y = A · sec(Bx − E) + D,
the transformations are the same as above, except for the phase shift and
vertical asymptotes where you replace C with E

B . If E
B < 0 the phase shift is to

the right, and if E
B > 0 it is to the left.

• For tangent and cotangent, vertical asymptotes occur at

x = E

B
+ π

|B|
n,

where n is an integer.

• For cosecant and secant, vertical asymptotes occur at

x = E

B
+ π

2|B|
n,
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where n is an integer.

Example 2.2.23 Vertical Stretch/Compression and Reflection about
the x-axis. Graph each function

1. y = tan(x)

2. y = 2 tan(x)

3. y = 1
2 tan(x)

4. y = − tan(x)

Solution.

− π
4

π
4

−2

2

y = tan(x)

y = 2 tan(x)

y = 1
2 tan(x)

y = − tan(x)

x = − π
2 x = π

2

x

y

Figure 2.2.24 The transformations of the tangent function graph, starting with
a baseline of y = tan(x) along with graphs with a vertical stretch, a vertical
compression, and a reflection about the x-axis.

□

Example 2.2.25 Horizontal Stretch/Compression and Reflection
about the y-axis. Identify the period and graph one period for each of the
following functions:

1. y = cot(x)

2. y = cot(2x)

3. y = cot
(

1
2x

)
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4. y = cot(−x)

Solution.

1. The period for y = cot(x) is π

2. The period for y = cot(2x) is

period = π

|2|
= π

2

3. The period for y = cot
( 1

2 x
)

is

period = π∣∣ 1
2
∣∣ = 2π

4. The period for y = cot(−x) is

period = π

| − 1|
= π

−π − π
2

π
2

π 3π
2

2π

−2

2

y = cot(x)y = cot(2x)

y = cot
( 1

2 x
)

y = cot(−x)

x = −π

x = π
2

x = π

x = 2π

x

y

Figure 2.2.26 The transformations of the cotangent function graph, starting
with a baseline of y = cot(x) along with graphs with a horizontal stretch, a
horizontal compression, and a reflection about the y-axis.

□

Example 2.2.27 Phase Shifts and Vertical Shifts. Graph the function
y = csc

(
x − π

2
)

+ 2.
Solution.
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− 3π
2

− π
2

π
2

3π
2

−4

−2

2

4

6

y = sin(x)

y = csc(x)

y = sin
(
x − π

2
)

y = csc
(
x − π

2
)

+ 2

x

y

Figure 2.2.28 The graphs of y = csc
(
x − π

2
)

+ 2 and y = sin
(
x − π

2
)

+ 2 start
with the plots of y = csc(x) and y = sin(x) and add a phase shift of π

2 to the
right and a vertical shift up by 2.

□
Explore the effects of various transformations using the interactive features

in Figure 2.2.29 and Figure 2.2.30.

Figure 2.2.29 Manipulate the graphs of tangent and cotangent by adjusting
the sliders for A, B, C, and D. Observe the effects on period, phase and vertical
shifts, as well as reflections about the x- and y-axes. Additionally, you can
toggle between the tangent and cotangent graphs by selecting the corresponding
function.

Figure 2.2.30 Manipulate the graphs of cosecant and secant by adjusting the
sliders for A, B, C, and D. Observe the effects on period, phase and vertical
shifts, as well as reflections about the x- and y-axes. Additionally, you can
toggle between the cosecant and secant graphs by selecting the corresponding
function.

2.2.10 Exercises

Exercise Group. Graph the function.
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1. y = sec(x) − 4
Answer.

−2π −π π 2π

−10

−5

5

10

x

y

2. y = cot(x) − 1
Answer.

−2π −π π 2π

−10

−5

5

10

x

y

3. y = csc(x) + 3
Answer.

−2π − 3π
2

−π − π
2

π
2

π 3π
2

2π

−10

−5

5

10

x

y

4. y = tan(x) + 2
Answer.

− 3π
2

−π − π
2

π
2

π 3π
2

−10

−5

5

10

x

y

5. y = 1
2 tan(x)

Answer.

− 3π
2

−π − π
2

π
2

π 3π
2

−10

−5

5

10

x

y

6. y = −3 csc(x)
Answer.

−2π − 3π
2

−π − π
2

π
2

π 3π
2

2π

−10

−5

5

10

x

y

7. y = 2 cot(x)
Answer.

−2π −π π 2π

−10

−5

5

10

x

y

8. y = 4 sec(x)
Answer.

−2π −π π 2π

−10

−5

5

10

x

y
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9. y = − 1
2 tan(2x) + 2

Answer.

−π − π
2

π
2

π

−10

−5

5

10

x

y

10. y = 2 csc(3x) + 3
Answer.

−2π − 3π
2

−π − π
2

π
2

π 3π
2

2π

−10

−5

5

10

x

y

11. y = 3 cot
( 1

2 x
)

− 1
Answer.

−2π −π π 2π

−10

−5

5

10

x

y

12. y = −3 sec(2x) − 4
Answer.

−2π −π π 2π

−10

−5

5

10

x

y

Exercise Group. Determine the period for each function, and sketch the
graph.

13. y = cot
( 1

2 x
)

Answer. Period: 2π

−2π −π π 2π

−10

−5

5

10

x

y

14. y = tan
(

π
3 x

)
Answer. Period: 3

−4 −2 2 4

−10

−5

5

10

x

y

15. y = sec
(

π
4 x

)
Answer. Period: 8

−6 −4 −2 2 4 6

−10

−5

5

10

x

y

16. y = csc
(

π
6 x

)
Answer. Period: 12

−6 −3 3 6

−10

−5

5

10

x

y
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17. y = tan(2x)
Answer. Period: π

2

−π − π
2

π
2

π

−10

−5

5

10

x

y

18. y = sec
(

π
2 x

)
Answer. Period: 4

−6 −4 −2 2 4 6

−10

−5

5

10

x

y

19. y = csc
( 1

4 x
)

Answer. Period: 8π

−8π −6π −4π −2π 2π 4π 6π 8π

−10

−5

5

10

x

y

20. y = cot
(

π
6 x

)
Answer. Period: 6

−6 −3 3 6

−10

−5

5

10

x

y

Exercise Group. Match the given function to one of the graphs below.

−2π −π π 2π 3π

−10

−5

5

10(A)

x

y

−2π −π π 2π

−2

2

(B)

x

y

−2π −π π 2π

−10

−5

5

10(C)

x

y

−2π −π π 2π

−10

−5

5

10(D)

x

y
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−π π 2π

−10

−5

5

10(E)

x

y

−2π −π π 2π

−10

−5

5

10(F)

x

y

21. y = csc(2x) + 4
Answer. C

22. y = 2 tan
(
x − π

4
)

Answer. A
23. y = 3 cot

(
x − π

2
)

Answer. E
24. y = − 1

3 cot(x)
Answer. B

25. y = −2 csc(2x)
Answer. F

26. y = sec
(
x + π

3
)

− 2
Answer. D

Exercise Group. Find the period, phase shift, and vertical shift of each
function and sketch the graph.

27. y = 2 tan(x) + 3
Answer. Period: π; Phase
Shift: 0; Vertical Shift: 3

−2π −π π 2π

−10

−5

5

10

x

y

28. y = 1
2 cot

( 1
2 x

)
+ 1

Answer. Period: 2π; Phase
Shift: 0; Vertical Shift: 1

−2π −π π 2π

−10

−5

5

10

x

y

29. y = − csc
(
x + π

4
)

Answer. Period: 2π; Phase
Shift: − π

4 ; Vertical Shift: 0

−2π −π π 2π

−10

−5

5

10

x

y

30. y = − 1
3 sec(2x)

Answer. Period: π; Phase
Shift: 0; Vertical Shift: 0

−2π − 3π
2

−π − π
2

π
2

π 3π
2

2π

−10

−5

5

10

x

y
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31. y = 2 sec
(

π
2 x

)
+ 4

Answer. Period: 4; Phase
Shift: 0; Vertical Shift: 4

−6 −4 −2 2 4 6

−10

−5

5

10

x

y

32. y = cot
(
x − π

3
)

+ 2
Answer. Period: π; Phase
Shift: π

3 ; Vertical Shift: 2

− 5π
3 − 2π

3
π
3

4π
3

−10

−5

5

10

x

y

33. y = tan
(
x − π

6
)

+ 1
Answer. Period: π; Phase
Shift: π

6 ; Vertical Shift: 1

− 4π
3

− π
3

2π
3

5π
3

−10

−5

5

10

x

y

34. y = − 1
4 sec(x)

Answer. Period: 2π; Phase
Shift: 0; Vertical Shift: 0

−2π −π π 2π

−10

−5

5

10

x

y

35. y = 3 csc
(
x + π

2
)

Answer. Period: 2π; Phase
Shift: − π

2 ; Vertical Shift: 0

−2π −π π 2π

−10

−5

5

10

x

y

36. y = − tan
(
2

(
x − π

4
))

+ 2
Answer. Period: π

2 ; Phase
Shift: π

4 ; Vertical Shift: 2

−2π −π π 2π

−10

−5

5

10

x

y

Navigating with Shadows. When navigating the open ocean, maintaining
a straight course poses challenges due to limited visual markers. One technique
involves the steersperson using the positions of shadows cast by objects on the
canoe—such as crew members, railings, and sails—to keep them fixed on the
deck, ensuring a straight trajectory. However, if the canoe veers off course, the
changing position of the canoe relative to the sun leads to a shift in the shadows.
Observing these shadow movements allows the steersperson to make course
corrections. It’s important to note that this method is effective only over a
short duration, as the sun’s continuous movement across the sky causes ongoing
changes in shadow positions. To illustrate the limitations over extended periods,
consider the example of the Samoan double-hulled voyaging va‘a, Gaualofa,
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with a 14-meter-high mast. The length of the shadow is modeled by

l(t) = 14
∣∣∣cot

( π

12 t
)∣∣∣ ,

where l is the shadow length in meters and t represents the hours since 6
am (assuming sunrise at 6 am and sunset at 6 pm). In each of the following
questions, calculate the length of the shadow, rounded to the nearest tenth of a
meter, for the given time.

37. 7:00am
Answer. 52.2 meters

38. 10:00am
Answer. 8.1 meters

39. 12:00pm
Answer. 0 meters

40. 3:00pm
Answer. 14 meters

41. 4:00pm
Answer. 24.2 meters

42. Graph the length of the
shadow, l, throughout the day
from 6:00am to 6:00pm
(0 < t < 12)
Answer.

2 4 6 8 10 12

20

40

60

t

l

Exercise Group.

Rangiroa

d

N
or

th
→

θ

An observer on Rangiroa spots the Fa‘afaite, a double-hulled voyaging canoe
from Tahiti, sailing off the north coast of the atoll, maintaining a distance of
three nautical miles from the shore and traveling east. Let θ represent the angle
formed between the line from the observer to the va‘a and a line extending
due north from the observer, measured in radians. The angle θ is negative if
the va‘a is to the left of the observer and positive when to the right, as shown
in the figure above. The distance (in nautical miles), denoted by d(θ) from
Fa‘afaite to the observer is given by the function

d(θ) = 3 sec(θ).

In each of the following questions, calculate the distance from the observer
to Fa‘afaite, d(θ), in nautical miles, for the given angle θ. Round your answer
to two decimal places.



CHAPTER 2. GRAPHS OF THE TRIGONOMETRIC FUNCTIONS 134

43. θ = − π
3

Answer. 6.00 NM
44. θ = − π

4
Answer. 4.24 NM

45. θ = − π
6

Answer. 3.46 NM
46. θ = 0

Answer. 6.00 NM
47. θ = π

6
Answer. 3.46 NM

48. θ = π
4

Answer. 4.24 NM
49. θ = π

3
Answer. 6.00 NM

50. Graph the function d(θ) on
the domain − π

3 ≤ θ ≤ π
3 .

Answer.

− π
3 − π

4 − π
6

π
6

π
4

π
3

1

2

3

4

5

6

d(x) = 3 sec(x)

θ

d

51. What happens to d as θ
approaches π

2 ?
Answer. As θ approaches π

2 ,
the function d(θ) = 3 sec(θ)
approaches positive infinity.

52. What is the closest distance
Fa‘afaite comes to shore?
Where does this occur?
Answer. 3 NM, when
Fa‘afaite is directly north of
the observer (θ = 0)
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2.3 Sinusoidal Curve Fitting and Graphical Anal-
ysis

In this chapter, we have learned that sinusoidal patterns exist in various aspects
throughout our world. One example is the moon, which undergoes phases
oscillating from no illumination, to waxing (increasing illumination), reaching
a fully lit moon, and then waning (decreasing illumination) until it completes
its cycle with no illumination again. Indigenous cultures across the world have
deeply connected with these lunar cycles, shaping cultural practices aligned
with the moon’s phases. For example, the Māori of New Zealand and the Hopi
Tribe in northeastern Arizona, USA, both time activities like planting and
harvesting specific plants for each moon cycle based on generations of lunar
observations.

In Section 2.1, we graphed sinusoidal functions and determined their values
at any given time. The ability to formulate a sinusoidal equation modeling
the moon’s phases allows us to predict the moon’s phase on any date. In this
section, we will explore the process of developing sinusoidal functions based
on provided information. This will enable us to model real-world phenomena
using real data.

2.3.1 Finding Sinusoidal Equations from Characteristics
To begin finding sinusoidal equations of the form

y = A · sin(B(x − C)) + D and y = A · cos(B(x − C)) + D

we will refer to the characteristics of the sine and cosine functions described
in ("sine-cosine-transformations") and given below to help us determine the
parameter values for A, B, C, and D.

• Amplitude and Vertical Compression/Stretch: |A|

◦ |A| is the value of the amplitude.
◦ If |A| > 1, there is vertical stretching.
◦ If 0 < |A| < 1, there is vertical compression.

• Period and Horizontal Stretch/Compression: |B|

◦ The period is 2π
|B| .

◦ If |B| > 1, there is horizontal compression and the period is short-
ened.

◦ If 0 < |B| < 1, there is horizontal stretching and the period is
lengthened.

• Phase Shift: C

◦ If C is positive, there is a shift to the right.
◦ If C is negative, there is a shift to the left.

• Vertical Shift: D

◦ If D is positive, there is a shift upward.
◦ If D is negative, there is a shift downward.
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• Reflection about the x-axis:

◦ If A is negative (A < 0), there is a reflection about the x-axis.

• Reflection about the y-axis:

◦ If B is negative (B < 0), there is a reflection about the y-axis.

Example 2.3.1 Finding an Equation of a Sine Function Using its
Characteristics. Write an equation of a sine function with an amplitude of 2,
period of 8, phase shift of π

3 , and vertical shift of 4.
Solution. To determine an equation of the form

f(x) = A · sin(B(x − C)) + D

we first examine the information that we are given: amplitude of 2, period of 8,
phase shift of π

3 , and vertical shift of 4.
Since |A| represents the value of the amplitude, we get

|A| = 2.

Thus we either have A = 2 or A = −2. Since we are not given a reflection
about the x-axis, we can conclude that A is not negative, thus

A = 2.

Next, since the period of a sine function is given by 2π
|B| , we get

2π

|B|
= 8.

Solving for |B|, we get
|B| = 2π

8 = π

4
Since there is no reflection about the y-axis, we have that B must be positive:

B = π

4 .

Finally, since C and D represent the phase shift and vertical shift, respec-
tively, we get

C = π

3 , D = 4.

Combining these, the sine function becomes:

f(x) = 2 sin
(π

4

(
x − π

3

))
+ 4.

□

2.3.2 Finding Sinusoidal Equations from Graphs
Sometimes we are not explicitly given the characteristics of the function, but
are provided with the graph. Examining a graph can reveal its characteristics,
allowing us to find the equation of a function.

In this next example, we’ll explore how to find an equation of a cosine
function based on the graph of a sine function.
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Example 2.3.2 Finding an Equation of a Cosine Function Using the
Graph of a Sine Function. Below is the graph of y = sin(x).

π
2

π 3π
2

2π 5π
2

3π 7π
2

4π

−1

−0.5

0.5

1

x

y

Find an equation of the form y = A cos(B(x − C)) + D that fits the graph.
Solution. The characteristics of the cosine start its maximum when x = 0,
decrease to its minimum at x = π, and then increase before completing one
period at 2π. This graph starts at 0 when x = 0, then increases to its maximum
at x = π

2 , and then follows the characteristics of the cosine graph. This
represents a phase shift to the right. There no reflections about the x-axis or
y-axis. We will find the equation of a function with characteristics of a phase
shift to the right.

Amplitude (A): Since the amplitude of the cosine function will be the same
as the amplitude of the sine function, which is 1, we have |A| = 1. Since there
is no reflection about the x-axis, we choose to positive value to get A = 1.

Vertical Shift (D): The vertical shift of the cosine function will be the same
as that of the sine function, which is 0. So, we have D = 0.

Period (B): The period of the cosine function will also be the same as the
period of the sine function, which is 2π. Since 2π = 2π

|B| , we have |B| = 1. Since
there is no reflection about the y-axis, we get B = 1.

Therefore, we have

y = 1 cos(1x) + 0 = cos(x).

Overlapping the graph of y = cos(x) onto the original graph will help us
determine the phase shift.
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π
2

π 3π
2

2π 5π
2

3π 7π
2

4π

−1

−0.5

0.5
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Phase Shift (C): From the graph, the cosine function will have a phase shift
of π

2 radians to the right compared to the sine function. This is because the
cosine function reaches its maximum value at x = 0, while the sine function
reaches its maximum at x = π

2 . So, we have C = π
2 .

Therefore, the equation of the cosine function that fits the graph of y = sin(x)
is:

y = cos
(

x − π

2

)
□

Remark 2.3.3 Since this graph is also the graph of y = sin(x), we get

sin(x) = cos
(

x − π

2

)
.

This solution demonstrates that any sine function can also be written as a
cosine function, with an appropriate phase shift. In this case, the phase shift of
π
2 radians to the right converts the sine function to its corresponding cosine
function.
Example 2.3.4 Finding an Equation of a Sine Function Using its
Graphs. Find an equation that represents the following graph of the form
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(a)
f(x) = A sin(B(x − C)) + D

Solution. The characteristics of the sine function start at the origin,
increase to its maximum when x = π

2 , decrease to its minimum at x = 3π
2 ,

and then increase again before completing one period at 2π. In the given
graph, the function starts at 8 when x = 0, then increases to its maximum
value of 16 at x = 10, following the characteristics of the sine graph,
before completing one period at x = 40. This indicates a vertical shift,
a vertical stretch, and a horizontal stretching of the period. There are
no reflections about the x-axis or y-axis. Therefore, we need to find the
equation of a function with these characteristics.
Amplitude (A): Recall from Definition 2.1.24 that the amplitude is defined
as half the difference between the maximum and minimum values of the
function. Here, the maximum value is 16 and the minimum value is 0, so
the amplitude is:

|A| = 16 − 0
2 = 8.

Since there are no reflections about the x-axis, we use the postive value
to get A = 8.
Vertical Shift (D): The midline, calculated as

y = max + min
2 = 16 + 0

2 = 8,

represents the vertical shift of the graph. Therefore,

D = 8.

Period (B): The period of a function is the length of one cycle. You can
identify the period on the graph by measuring the horizontal distance
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between corresponding points where the graph completes a cycle. In this
case, we’ll use two corresponding peaks at x = 10 and x = 50 to obtain:

period = 50 − 10 = 40.

Note that other points on the graph, such as the minimum values or where
the graph crosses the midline, could also be used to determine the period.
Since Definition 2.1.28 defines a period as 2π

|B| , we have:

40 = 2π

|B|

Thus,
|B| = 2π

40 = π

20 .

Since there are no reflections about the y-axis, we get B = π
20 .

Phase Shift (C): The phase shift of the graph refers to its horizontal
translation. The characteristics of a sine function typically start at x = 0
on the midline, increase to the maximum, decrease, pass the midline to
the minimum, and then complete a cycle back at the midline. Since this
graph follows these characteristics without any horizontal translation,
there is no phase shift. Therefore, C = 0.
Thus, the graph can be described by the following sine function:

f(x) = 8 sin
( π

20x
)

+ 8

(b)
g(x) = A cos(B(x − C)) + D

Solution. Since the cosine function starts at the maximum value when
x = 0 before decreasing to its minimum and then increasing to complete
one period, the graph provides several options for phase shifts. By selecting
a peak and determining the direction and value of the phase shift needed
for the cosine function to reach that peak, we can align it with the desired
position. For example, if we choose the peak at x = −30, the cosine
function will shift 30 units to the left. Similarly, for peaks at x = 10 or
x = 50, the cosine function would need to shift 10 or 50 units, respectively,
to the right. Since the peak at x = 10 aligns closely with the peak of
the original cosine function when x = 0, we opt for this phase shift.
Additionally, similar to the graph of the sine function, there is a vertical
shift, a vertical stretch, and a horizontal stretch, with no reflections about
the y-axis or the x-axis.
Amplitude (A): The amplitude of a cosine function is the same as that
of the corresponding sine function. Thus, |A| = 8. Since there are no
reflections about the x-axis, we use the positive value to get A = 8.
Vertical Shift (D): The vertical shift of a cosine function is the same as
that of the corresponding sine function. Thus, D = 8.
Period (B): The period of a cosine function is also the same as that of
the corresponding sine function. In this case, |B| = π

20 . Since there are
no reflections about the y-axis, we determine B = π

20 .
Before we examine the phase shift, let’s summarize what we found so far:

g(x) = 8 cos
( π

20 (x)
)

+ 8
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and overlap this graph with the graph of the original.
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y

Phase Shift (C): From the graph, we see that the starting point of the
cosine function’s cycle is at its maximum value, unlike the starting point
of a sine function’s cycle, which is at its midline. In this case, the graph
has a horizontal shift to the right of 10 units. Thus, C = 10.
We can now describe the graph with the following cosine function:

g(x) = 8 cos
( π

20 (x − 10)
)

+ 8.

□

2.3.3 Finding Sinusoidal Equations from Data
Example 2.3.5 Modeling the Daylight Hours in Munda. In Section 2.1
we learned that Earth’s axis is tilted, and as the Earth orbits the sun, this axial
tilt causes seasons, which are periodic. Another effect of the axial tilt and orbit
is the amount of daylight each part of Earth experiences, which is also periodic.

The total sunlight duration in Munda, on the island of New Georgia in the
Solomon Islands in 2025, is plotted in Figure 2.3.6. On the 21st of June 2025
(the 172nd day of the year), which is the shortest day of the year in Munda, the
total sunlight duration is 11 hours, 38 minutes, and 15 seconds (approximately
11.64 hours). Conversely, on the 22nd of December 2025 (the 356th day of the
year), which is the longest day of the year, the total sunlight duration is 12
hours, 36 minutes, and 28 seconds (approximately 12.61 hours). Find a function
of the form y = A cos(B(x − C)) + D to model the total hours of daylight in
Munda in 2025, assuming that one period represents one year or 365 days.
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Figure 2.3.6 Hours of daylight in Munda, Solomon Islands. Source: NOAA
Solar Calculator.
Solution. Amplitdue (A): From the definition of amplitude (Definition 2.1.24),

|A| = max − min
2 = 12.61 − 11.64

2 = 0.485.

Assuming no reflections about the x-axis, we have:

A = 0.485.

Period (B): We assume a period of one year or 365 days. Additionally, we
can assume no reflections about the y-axis, leading to a positive value for B.
Thus we have 2π

B = 365 or

B = 2π

365 ≈ 0.0172.

Phase Shift (C): The characteristic of a cosine function is that at x = 0, the
function is at its maximum value. However, in this case, the maximum value
occurs on Day 356. This represents a phase shift to the right by 356 days, thus:

C = 356.

Vertical Shift (D): The value of the midline represents the average duration
of daylight, which is the vertical shift:

D = max + min
2 = 12.61 + 11.64

2 = 12.125.

Therefore, the equation of our function is

y = 0.485 cos(0.0172(x − 356)) + 12.125.

□
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Remark 2.3.7 It’s important to note that the average duration of daylight is
not exactly 12 hours but instead approximately 12.125 hours. This discrepancy
arises due to atmospheric refractions, which cause the apparent sunrise and
sunset to occur slightly before and after, respectively, the sun crosses the
horizon—the actual sunrise and sunset times.
Example 2.3.8 Modeling the Temperate in Christchurch. Another
effect of axial tilt besides daylight hours is temperature, which is also periodic.
The average monthly temperature for Christchurch, New Zealand is given in
Table 2.3.9 (Source: National Institute of Water and Atmospheric Research
(NIWA). Retrieved 18 March 2024). Find a sinusoidal function of the form y =
A cos(B(x−C))+D to model the average monthly temperature of Christchurch.

Table 2.3.9 The average monthly temperature for Christchurch, New
Zealand.

Month, x Temperature (◦C)
January, 1 17.5
February, 2 17.2
March, 3 15.5
April, 4 12.7
May, 5 9.8
June, 6 7.1
July, 7 6.6

August, 8 7.9
September, 9 10.3
October, 10 12.2

November, 11 14.1
December, 12 16.1

Solution. We begin by plotting the points in Table 2.3.9.
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y
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Examining the plot of the data points, we see this looks like the graph of a
cosine function with no reflections about the x-axis or y-axis.

Amplitude (A): The amplitude is

|A| = max − min
2 = 17.5 − 6.6

2 = 5.45.

Since there are no reflections about the x-axis, we get A = 5.45
Period (B): Since the temperatures repeat every 12 months, the period is

12 and so 2π
|B| = 12. Since there are no reflections about the y-axis, we keep the

positive value to obtain
B = 2π

12 = π

6 .

Vertical Shift (D): The vertical shift is the value of the average data:

D = max + min
2 = 17.5 + 6.6

2 = 12.05.

Phase Shift (C): The maximum temperature in the data occurs in January
(x = 1). However, since the graph of cosine reaches its maximum value at x = 0,
we have a phase shift of 1 to the right to align the peak with the maximum
temperature data point. Thus, C = 1.

Our function now becomes

y = 5.45 cos
(π

6 (x − 1)
)

+ 12.05.

Finally, we plot our function and the data together.
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□

Remark 2.3.10 Steps for Deriving Sinusoidal Models from Data.

1. Graph the data points.
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2. Determine the characteristics of the data, including vertical and horizontal
stretching, phase shifts, vertical shifts, and reflections about the x-axis or
y-axis.

3. Amplitude: Calculate the amplitude using the formula

|A| = max − min
2 .

Use the positive value if there is no reflection about the x-axis, and use
the negative value if there is a reflection.

4. Vertical Shift: Determine the vertical shift which is the average value of
the data, using the formula

D = max + min
2 .

5. Period: Calculate the period from the data, then find

|B| = 2π

period .

Use the positive value if there is no reflection about the y-axis, and use
the negative value if there is a reflection.

6. Phase Shift: Determine the phase shift by comparing points from the data
to those on the sine and cosine function, such as maximum and minimum
values as well as those values at the midline. This information will give
you the phase shift, C.

2.3.4 Finding Sinusoidal Equations with Technology
Some graphing utilities, such as the TI-83 calculator or Desmos Graphing
Calculator1, have functions that allow you to find a sinusoidal best-fit function
given data. While some devices can find the best-fit for both sine and cosine
functions, others only calculate the best-fit line for sine. For example, the TI-83
uses the SinReg function to calculate the sine function.

Example 2.3.11 Finding the Sinusoidal Equation using Desmos. Utilize
a graphing utility to determine the best-fit cosine function for the data provided
in Table 2.3.9.
Solution.

1. Open a new table in the Desmos Graphing Calculator by either typing
“table” in a blank expression line or clicking the Add Item menu in the
upper left corner and selecting Table.

2. Enter the values from Table 2.3.9 into the table, where x1 represents the
month and y1 represents the temperature.

3. Use the Zoom Fit icon (a magnifying glass with a + symbol) at the
bottom left corner of the table to automatically adjust the graph settings
window to best display your data.

4. In a blank expression line, type “y1 ∼ A cos(B(x1 − C)) + D” to fit a
cosine function to the data.

1DesmosGraphingCalculator

https://www.desmos.com/calculator
https://www.desmos.com/calculator
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5. The parameters for the best-fit function will be returned: A = 5.2141,
B = 0.534145, C = 1.19926, D = 12.1509. Thus, the best-fit cosine
function is:

y = 5.2141 cos(0.534145(x − 1.19926)) + 12.1509.

Figure 2.3.12 displays an interactive Desmos Graphing Calculator with the
completed table and the line of best fit plotted together.

Figure 2.3.12 Given data points in a table, Desmos can create a sinusoidal
function to model the data.

□

2.3.5 Exercises

Exercise Group. Write the equation of a sine function with the following
characteristics:

1. Amplitude: 2; Period: π.
Answer. y = 2 sin (2x)

2. Amplitude: 3; Period: π
2 .

Answer. y = 3 sin (4x)
3. Amplitude: 1.5; Period: π

6 ;
Reflection about the x-axis.
Answer. y = −1.5 sin (12x)

4. Amplitude: 2; Period: 3π;
Reflection about the x-axis.
Answer. y = −2 sin

( 2
3 x

)
5. Amplitude: 4; Period: 2π

3 ;
Vertical Shift 2.
Answer. y = 4 sin (3x) + 2

6. Amplitude: 3; Period: 5
2 ;

Vertical Shift: − 2
3 .

Answer. y = 3 sin
( 4π

5 x
)

− 2
3

7. Amplitude = 1
2 ; Period = 2π;

Phase Shift = π
4 .

Answer. y = 1
2 sin

(
x − π

4
)

8. Amplitude: 1; Period: 5π
3 ;

Phase Shift: π
6 .

Answer. y =
sin

( 6
5

(
x − π

6
))
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9. Amplitude: 2, Period: 3π
2 ;

Phase Shift = π
3 ; Vertical

Shift = −1.
Answer. y =
2 sin

( 4
3

(
x − π

3
))

− 1

10. Amplitude = 2, Period = 20;
Phase Shift = − π

4 ; Vertical
Shift = 3.
Answer. y =
2 sin

(
π
10

(
x + π

4
))

+ 3

Exercise Group. Write the equation of a cosine function with the following
characteristics:

11. Amplitude = 1.8; Period =
2π.
Answer. y = 1.8 cos (x)

12. Amplitude = 2.5; Period = π
4 .

Answer. y = 2.5 cos (8x)

13. Amplitude = 2; Period = 7π
4 ;

Reflection in the x-axis.
Answer. y = −2 cos

( 8
7 x

)
14. Amplitude = 1.5; Period

= 4π
5 ; Reflection in the x-axis.

Answer. y = −1.5 cos
( 5

2 x
)

15. Amplitude = 4; Period = 5π
3 ;

Vertical Shift = -3.
Answer. y = 4 cos

( 6
5 x

)
− 3

16. Amplitude = 3.5; Period
= 4π

3 ; Vertical Shift = 2.
Answer. y = 3.5 cos

( 3
2 x

)
+2

17. Amplitude = 3; Period = 3π
2 ;

Phase Shift = π
6 .

Answer. y =
3 cos

( 4
3

(
x − π

6
))

18. Amplitude = 2.5; Period = π
3 ;

Phase Shift = π
4 .

Answer. y =
2.5 cos

(
6

(
x − π

4
))

19. Amplitude = 2; Period = 3π;
Phase Shift = − π

2 ; Vertical
Shift = 2.
Answer. y =
2 cos

( 2
3

(
x + π

2
))

+ 2

20. Amplitude = 1.2; Period =
5π
2 ; Phase Shift = − π

3 ;
Vertical Shift = 3.
Answer. y =
1.2 cos

( 4
5

(
x + π

3
))

+ 3

Exercise Group. For each given graph, identify the amplitude, period, phase
shift, and vertical shift. Write an equation that represents these characteristics
of the form y = A sin(B(x − C)) + D.

21.

−4 −2 2 4 6 8

−4

−2

2

4

x

y

Answer. Amplitude: A = 4;
Period: 8; Phase Shift: C = 0;
Vertical Shift: D = 0;
y = 4 sin

(
π
4 x

)

22.

−π − π
2

π
2

π 3π
2

2π

−2

−1

1

2

3

4

x

y

Answer. Amplitude: A = 3;
Period: π; Phase Shift: C = 0;
Vertical Shift: D = 1;
y = 3 sin(2x) + 1
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23.
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Answer. Amplitude:
A = 1.5; Period: π; Phase
Shift: C = π

2 ; Vertical Shift:
D = −1;
y = 1.5 sin

(
2

(
x − π

2
))

− 1

24.
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Answer. Amplitude: A = 4;
Period: 12; Phase Shift:
C = 3; Vertical Shift: D = 2;
y = 4 sin

(
π
6 (x − 3)

)
+ 2

Exercise Group. For each given graph, identify the amplitude, period, phase
shift, and vertical shift. Write an equation that represents these characteristics
of the form y = A cos(B(x − C)) + D.

25.
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Answer. Amplitude: A = 2;
Period: 2π

3 ; Phase Shift:
C = 0; Vertical Shift: D = 1;
y = 2 cos(3x) + 1

26.
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Answer. Amplitude: A = 5;
Period: 12; Phase Shift:
C = 2; Vertical Shift: D = 0;
y = 5 cos

(
π
6 (x − 2)

)
27.

π 2π 3π 4π 5π 6π

−6

−4

−2

xy

Answer. Amplitude: A = 2;
Period: 4π; Phase Shift:
C = π; Vertical Shift:
D = −4;
y = 2 cos

( 1
2 (x − π)

)
− 4

28.

2π 4π 6π 8π 10π

−2

2

4

6

x

y

Answer. Amplitude: A = 4;
Period: 8π; Phase Shift:
C = 2π; Vertical Shift: D = 2;
y = 4 cos

( 1
4 (x − 2π)

)
+ 2

Hours of daylight. For each of the following questions, the number of daylight
hours for a pair of islands in 2025 is given. These islands share the same latitude
or are close to it, with one island located north of the equator and the other
south of it. Find a sinusoidal function of the form y = A cos(B(x − C)) + D to
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model the daylight hours for each island. This data is sourced from the NOAA
Solar Calculator.

29. Pohnpei, situated at 6.9° North latitude in the Federated States of
Micronesia, experiences its longest day, lasting 12.52 hours, on 21 June
2025 (the 172nd day of the year), and its shortest day, lasting 11.72
hours, on 22 December 2025 (the 356th day of the year).

Nanumanga, located at 6.3° South latitude in Tuvalu, experiences
its longest day, lasting 12.49 hours, on 22 December 2025 (the 356th
day of the year), and its shortest day, lasting 11.76 hours, on 21 June
2025 (the 172nd day of the year).

Jan Mar May Jul Sep Nov
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13.5

Pohnpei

Nanumanga

month

hours

Answer. Pohnpei: y = 0.4 cos(0.0172(x − 172)) + 12.12; Nanumanga:
y = 0.365 cos(0.0172(x − 356)) + 12.125

30. Saipan, positioned at 15.2° North latitude in the Northern Mariana
Islands, has its longest day, lasting 13.03 hours, on 21 June 2025 (the
172nd day of the year), and its shortest day, lasting 11.23 hours, on 22
December 2025 (the 356th day of the year).

Espiritu Santo, located at 15.4° South latitude in Vanuatu, experi-
ences its longest day, lasting 13.04 hours, on 22 December 2025 (the
356th day of the year), and its shortest day, lasting 11.21 hours, on 21



CHAPTER 2. GRAPHS OF THE TRIGONOMETRIC FUNCTIONS 150

June 2025 (the 172nd day of the year).
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Answer. Saipan: y = 0.9 cos(0.0172(x−172))+12.13; Espiritu Santo:
y = 0.915 cos(0.0172(x − 356)) + 12.125

31. Kaua‘i, situated at 22.1° North latitude in Hawai‘i, has its longest day,
lasting 13.48 hours, on 20 June 2025 (the 171st day of the year), and
its shortest day, lasting 10.78 hours, on 21 December 2025 (the 355th
day of the year).

Mangai, located at 21.9° South latitude in the Cook Islands, expe-
riences its longest day, lasting 13.47 hours, on 21 December 2025 (the
355th day of the year), and its shortest day, lasting 10.79 hours, on 20
June 2025 (the 171st day of the year).

It’s noteworthy that Kaua‘i and Mangai are situated east of the
International Date Line, causing them to experience the winter and
summer solstice one day earlier than islands located west of the Inter-
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national Date Line.
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Answer. Kaua‘i: y = 1.35 cos(0.0172(x − 171)) + 12.13; Mangaia:
y = 1.34 cos(0.0172(x − 355)) + 12.13

32. What patterns do you observe when comparing the graphs of daylight
hours for pairs of islands across different latitudes? Additionally, how
does the variation in daylight hours change as latitude moves from
closer to the equator to further away?
Answer. Antipodal islands exhibit mirrored patterns in daylight
hours, where one island experiences longer days while the other expe-
riences shorter days. This is due to their opposite positions relative to
the equator.

As latitude increases (moving away from the equator), the variation
in daylight hours also increases. Islands closer to the equator experience
less variation in daylight hours throughout the year, while islands
further away from the equator experience more significant changes in
daylight hours between seasons.

Exercise Group. The islands of O‘ahu and Rarotonga are located at similar
distances from the equator. However, they experience different climates due
to their locations relative to the equator. O‘ahu is situated at a latitude of
21.3 degrees north, and Rarotonga is located at a latitude of 21.2 degrees
south. The table below gives the average monthly temperatures (in °C) for each
island. Use the data in the table to answer the following questions. Source:
http://www.worldclimate.com, retrieved on 18 March, 2024.

http://www.worldclimate.com
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Month (x) O‘ahu (21.3° N) Rarotonga (21.2° S)
January (1) 22.7 25.7
February (2) 22.7 26.1

March (3) 23.5 25.8
April (4) 24.3 24.9
May (5) 25.2 23.5
June (6) 26.3 22.3
July (7) 26.9 21.7

August (8) 27.4 21.6
September (9) 27.2 22.1
October (10) 26.4 22.9

November (11) 25.1 23.8
December (12) 23.3 24.8

33. Determine a sinusoidal function of the form y = A sin(B(x − C)) + D
to represent the average monthly temperatures provided in the table
for each island.
Answer. O‘ahu: y = 2.35 sin(0.5236(x − 5)) + 25.05; Rarotonga:
y = 2.25 sin(0.5236(x − 11)) + 23.85

34. Utilize a graphing utility to identify the best-fit sinusoidal function of
the form y = A sin(B(x − C)) + D for each island.
Answer. O‘ahu: y = 2.3727 sin(0.502443(x − 4.72583)) + 25.005;
Rarotonga: y = 2.24202 sin(0.521233(x + 1.16396)) + 23.7744

35. How do the temperature patterns of O‘ahu, situated in the north-
ern hemisphere, compare with those of Rarotonga, positioned in the
southern hemisphere?
Answer. During O‘ahu’s winter, Rarotonga experiences its sum-
mer, and similarly, during O‘ahu’s summer, Rarotonga experiences its
winter.

Exercise Group. Use the table below, which gives the average monthly
temperatures (in Celsius) at various latitudes in the South Pacific, to answer the
following questions. Express your answers in the form y = A sin(B(x − C)) + D.
Source: Data for Apia, Suva, Nuku‘alofa, and Rapa Nui obtained from http:
//www.worldclimate.com, retrieved on 18 March 2024; Data for Whangārei and
Dunedin obtained from National Institute of Water and Atmospheric Research
(NIWA)2, retrieved on 18 March 2024.

2NationalInstituteofWaterandAtmosphericResearch(NIWA)

http://www.worldclimate.com
http://www.worldclimate.com
https://niwa.co.nz/education-and-training/schools/resources/climate/meanairtemp
https://niwa.co.nz/education-and-training/schools/resources/climate/meanairtemp
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Apia Suva Nuku‘alofa Rapa Nui Whangārei Dunedin
Month 13.8°S 18.1°S 21.1°S 27.1°S 35.7°S 45.9°S
Jan (1) 27.6 26.7 25.6 23.3 19.9 15.3
Feb (2) 27.6 26.9 26 23.7 20.2 15
Mar (3) 27.8 26.7 25.8 23.1 18.8 13.7
Apr (4) 27.8 26 24.9 21.9 16.6 11.7
May (5) 27.4 24.8 23.1 20.1 14.4 9.3
Jun (6) 27.1 24 22.4 18.9 12.4 7.3
Jul (7) 26.7 23.2 21.3 18 11.6 6.6
Aug (8) 26.5 23.2 21.2 17.9 11.9 7.7
Sep (9) 26.7 23.7 21.7 18.3 13.3 9.5
Oct (10) 27 24.4 22.4 19 14.6 10.9
Nov (11) 27.4 25.2 23.5 20.4 16.4 12.4
Dec (12) 27.4 26.1 24.7 21.8 18.5 13.9

36. Determine a sinusoidal
function to represent the
average monthly temperature
in

(a) Apia, Sāmoa (13.8°S)

Answer. y =
0.65 sin(0.5236(x −
11)) + 27.15

(b) Suva, Fiji (8.1°S)

Answer. y =
1.85 sin(0.5236(x −
11)) + 25.05

(c) Nuku‘alofa, Tonga
(21.1°S)

Answer. y =
2.4 sin(0.5236(x − 11)) +
23.6

(d) Rapa Nui (27.1°S)

Answer. y =
2.9 sin(0.5236(x − 11)) +
20.8

(e) Whangārei, New
Zealand (35.7°S)

Answer. y =
4.3 sin(0.5236(x − 11)) +
15.9

(f) Dunedin, New Zealand
(45.9°S)

Answer. y =
4.35 sin(0.5236(x −
11)) + 10.95

37. Utilize a graphing utility to
identify the best-fit sinusoidal
function in

(a) Apia, Sāmoa (13.8°S)

Answer. y =
0.599155 sin(0.590429(x−
0.197373)) + 27.2133

(b) Suva, Fiji (8.1°S)

Answer. y =
1.86982 sin(0.532431(x +
1.0423)) + 25.0509

(c) Nuku‘alofa, Tonga
(21.1°S)

Answer. y =
2.41339 sin(0.521333(x +
1.07987)) + 23.5577

(d) Rapa Nui (27.1°S)

Answer. y =
2.93283 sin(0.494705(x +
1.55737)) + 20.6621

(e) Whangārei, New
Zealand (35.7°S)

Answer. y =
4.27205 sin(0.503071(x +
1.88988)) + 15.8716

(f) Dunedin, New Zealand
(45.9°S)

Answer. y =
4.07644 sin(0.524652(x +
1.8183)) + 11.1006
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38. Based on the sinusoidal
functions that you found,
what can you conclude about
the relationship between
temperature and latitude?
Answer. As latitude
increases (moving away from
the equator towards the
poles), the sinusoidal
function’s amplitude increases,
signifying greater temperature
variability, while its vertical
shift decreases, indicating
lower average temperatures at
higher latitudes.
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2.4 Inverse Trigonometric Functions
Swells are a crucial navigational tool, providing a consistent means of main-
taining a straight course over extended periods. Unlike stars, which may be
obscured during the day or on cloudy nights, or winds that can change direc-
tion frequently, swells tend to remain relatively constant. Crew members can
navigate a straight course by keeping the angle at which the swell passes the
canoe constant.

Even in poor visibility, when the crew may not see the swells, they can feel
them. Parts of the vaka (canoe) lift and lower as the swells pass beneath. Skilled
navigators use these movements to maintain course, even without directly seeing
the waves.

The side-to-side rocking motion of the canoe is known as roll. This motion
occurs when a swell approaches from either the port (left) or starboard (right)
side, causing the vaka to initially lift the corresponding hull (port or starboard),
followed by the opposite hull, depending on the direction of the swell.

When a swell approaches from the bow (front) of the canoe, it lifts the
front, causing the canoe to tilt backward before tilting forward. This motion
is known as pitch. Conversely, if the swell comes from the stern (back), the
canoe tilts forward and then backward.

When a swell approaches the canoe from an angle that is not perpendicular
to any side, a combination of pitch and roll occurs. The specific motion
experienced depends on the precise angle of the swell. For instance, if the
swell comes from an angle and lifts the starboard bow (front right), it may
subsequently lift the port bow, followed by the starboard stern, and finally the
port stern. However, with a slightly different angle, the sequence may change
as well. After lifting the starboard bow, it could lead to the starboard stern
being lifted next, followed by the port bow, and finally the port stern. This
twisting motion is referred to as a corkscrew effect due to its combination of
motions.

The video in Figure 2.4.1 demonstrates how the vaka Paikea moves as swells
pass under the hulls. A change in vaka motion can indicate either a change in
the canoe’s direction or a shift in the direction of ocean swells. In such cases,
the crew must assess the situation and, when conditions allow, utilize celestial
markers, such as the rising and setting of stars, to determine the direction of
the swells.

Figure 2.4.1 As swells pass under the vaka Paikea, the canoe pitches, rolls,
and corkscrews, depending on the angle of the swell. A navigator can use these
movements to keep a straight course.

As the vaka Paikea sails north in the Cook Islands from Rarotonga to
Aitutaki with a heading of 0◦, the swells are approaching the vaka from the
southwest and moving towards the northeast. Referring to Figure 1.2.17, which
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provides heading angles, we observe that the swells have a heading ranging
between 0◦ (north) and 90◦ (east).

Additional observations of the crew reveal the swells hit Paikea in the
following order: 1) port stern (back left); 2) starboard stern (back right); 3)
port bow (front left); and 4) starboard bow (front right), as shown in Figure 2.4.2.
If Paikea is 14.8 m (50 ft) in length and 6.2 m (20 ft) in width, what is the
possible range of headings from which the swells may be approaching?

Waves

θN
or

th

Figure 2.4.2 Swells moving towards the northeast pass under the vaka Paikea
heading.

To determine the range of headings, we start by considering one boundary,
which occurs when the swells are moving directly north with a heading of
0◦. To identify the other boundary, we want to find the angle at which the
swell intersects both the starboard stern and port bow simultaneously as it
passes beneath the vaka. Essentially, we want to find the angle that diagonally
traverses the canoe from one corner to another. To simplify this, we represent
the vaka as a rectangle and create a triangle by connecting the corners. The
angle, denoted as θ, is formed between the side adjacent to the 14.8 m length
of the canoe and the diagonal. This angle corresponds to the heading of the
swells, as shown in Figure 2.4.3.
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14
.8

m

6.2 m

θ

Figure 2.4.3 The deck of the vaka Paikea can be simplified to a rectangle, and
its diagonal represents the threshold between different sequences of motions as
swells pass. The angle θ corresponds to the heading of the swells.

You may notice that for our given angle, θ, we have the opposite side of
length 6.2 m and the adjacent side of length 14.8 m, which are both related to
the tangent function:

tan θ = 14.8
6.2

Until now, the angles for the trigonometric problems we encountered were
given. However, to solve for the angle θ, we cannot simply divide by “tan” since
it is part of the tangent function, which takes an angle as input and provides a
ratio of sides as output. To find the angle θ, we need to use the inverse function,
which takes the ratio of sides as input and provides an angle as output. In
this section, we will explore inverse trigonometric functions, including their
properties and usage.

2.4.1 Inverse Trigonometric Functions
Recall from algebra that for a function f and its inverse function f−1 we have

1. The Domain of f−1 = Range of f

2. The Range of f−1 = Domain of f

3. If f(a) = b then f−1(b) = a

In terms of trigonometric functions, for example, if f(x) = sin x then
f−1(x) = sin−1 x. Now consider sin

(
π
4

)
=

√
2

2 , then π
4 = sin−1

( √
2

2

)
.

Remark 2.4.4 Be Careful. Do not confuse the inverse trigonometric
notations with an exponent, in other words, sin−1 x ̸= 1

sin x . To avoid this, we
will use parentheses around the trigonometric function to denote the power of
negative one: (sin x)−1.
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Also recall from algebra that for a function, f , to have an inverse, f−1,
it must be one-to-one,meaning no horizontal line intersects the graph more
than once. Since this is not true for trigonometric functions, they do not have
inverses. We need functions to be one-to-one because both sin π

4 =
√

2
2 and

sin 3π
4 =

√
2

2 but if we took the inverse of sine, would we wouldn’t know to use
sin−1

( √
2

2

)
= π

4 or sin−1
( √

2
2

)
= 3π

4 . To avoid this confusion and to ensure
the function is one-to-one, we can put restrictions on the domains of each
trigonometric function so they attain all the values in the range only once,
making the function one-to-one, and thus have an inverse (see Figure 2.4.5).

−π − π
2

π
2

π3π
2

2π

−1

1

f(x) = sin x

x

y

Figure 2.4.5 The graph of f(x) = sin x does not pass the horizontal line test
and is not one-to-one. If we restrict the graph to − π

2 ≤ x ≤ π
2 so that each

value in the range [−1, 1] is attained only once, then the function is one-to-one
and has an inverse.

We will restrict the domain of y = sin x to the interval [− π
2 , π

2 ], the domain
of y = cos x to [0, π], and the domain of y = tan x to the interval (− π

2 , π
2 ).

Notice that the domain for each trigonometric function includes one quadrant
where the function is positive and one quadrant where it is negative. The
domains and the corresponding graphs for sine, cosine, and tangent are shown
in Figure 2.4.6, Figure 2.4.7, and Figure 2.4.8, respectively.

x

y

θ
− π

2
π
2

−1

1

f(x) = sin x

x

y

Figure 2.4.6 The domain of y = sin x (left) and its graph on the restricted
domain (right).
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x

y

θ
π
2

π

−1

1

f(x) = cos x

x

y

Figure 2.4.7 The domain of y = cos x (left) and its graph on the restricted
domain (right).

x

y

θ
− π

2
π
2

−5

5

f(x) = tan x

x

y

Figure 2.4.8 The domain of y = tan x (left) and its graph on the restricted
domain (right).

With these new restrictions on the domains, we now have trigonometric
functions that are one-to-one and so we can define their inverse functions:
Definition 2.4.9 Inverse Sine. The inverse sine function is symbolized
by

y = sin−1 x and means x = sin y.

The inverse sine function is also called the arcsine function, and is denoted
by arcsin x. ♢

Definition 2.4.10 Inverse Cosine. The inverse cosine function is
symbolized by

y = cos−1 x and means x = cos y.

The inverse cosine function is also called the arccosine function, and is
denoted by arccos x. ♢

Definition 2.4.11 Inverse Tangent. The inverse tangent function is
symbolized by

y = tan−1 x and means x = tan y.

The inverse tangent function is also called the arctangent function, and is
denoted by arctan x. ♢
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Definition 2.4.12 Inverse Cosecant, Secant, and Cotangent. Inverse
cosecant, inverse secant, and inverse cotangent functions are not as common as
the other trigonometric functions and we will just summarize them.

y = csc−1 x means x = csc y

y = sec−1 x means x = sec y

y = cot−1 x means x = cot y

♢

Definition 2.4.13 Domain and Range for Inverse Trigonometric
Functions. The domain and range for each function is

Function Domain Range

sin−1 [−1, 1]
[
− π

2 , π
2

]
cos−1 [−1, 1] [0, π]
tan−1 [−∞, ∞]

(
− π

2 , π
2

)
csc−1 (−∞, −1] ∪ [1, ∞)

[
− π

2 , π
2

]
, y ̸= 0

sec−1 (−∞, −1] ∪ [1, ∞) [0, π], y ̸= π
2

cot−1 (−∞, ∞) (0, π)

♢

2.4.2 Finding the Exact Value of an Inverse Trigonometric
Function

Example 2.4.14 Evaluating Inverse Trigonometric Functions. Find
the exact value

(a) cos−1 ( 1
2
)

Solution. Let θ = cos−1 ( 1
2
)
. Then evaluating the problem is the same

as determining the angle, θ, for which

cos θ = 1
2 .

Although there are infinite values of θ that satisfy the equation, such as
θ = π

3 and θ = 5π
3 , there is only one value that lies in the interval [0, π].

Thus, cos−1 ( 1
2
)

= π
3 .

(b) tan−1 √
3

Solution. Let θ = tan−1 √
3. Then we must find θ that satisfies tan θ =√

3 as well as satisfies the range of tan−1. Because tan π
3 =

√
3 and

− π
2 < π

3 < π
2 , we conclude that tan−1 √

3 = π
3 .

(c) sin−1
(

−
√

2
2

)
Solution. The angle, θ, in the interval [− π

2 , π
2 ] that satisfies sin θ = −

√
2

2

is θ = sin−1
(

−
√

2
2

)
= − π

4 .

□
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2.4.3 Approximations of Inverse Trigonometric Functions
To evaluate inverse trigonometric functions that do not have special angles, we
will need to use a calculator.
Remark 2.4.15 Using a Calculator. Using a calculator for inverse trigono-
metric functions: Most calculators will have a special key for the inverse sine,
cosine, and tangent functions. Depending on your calculator, you may see the
following keys for inverse the inverse trigonometric functions

Function Calculator Key
inverse sine SIN^-1 , INV SIN , ARCSIN , or ASIN
inverse cosine COS^-1 , INV COS , ARCCOS , or ACOS
inverse tangent TAN^-1 , INV TAN , ARCTAN , or ATAN

Often, the inverse trigonometry key can be found by first pressing 2nd or
SHIFT , followed by the trigonometry function key. For example, to get the
SIN^-1 key, press 2nd SIN or SHIFT SIN .

Many calculators do not have specific keys for the inverse cosecant, se-
cant, and cotangent functions. Instead, you can the Reciprocal Identities
(Definition 1.4.2) to get

Function Calculator Key
inverse cosecant 1 / SIN^-1
inverse secant 1 / COS^-1
inverse cotangent 1 / TAN^-1

Example 2.4.16 Finding an Approximate Value of Inverse Trigonomet-
ric Functions. Use a calculator to approximate the value of each expression
in radians, rounded to two decimals.
(a) cos−1(−0.39)

Solution. First verify the mode of the calculator is in radians. Then,
press the following keys COS^-1 ( (-) 0.39 ) ENTER to get

cos−1(−0.39) ≈ 1.9714279195

If your calculator does not have the COS^-1 key, then use the appropriate
key(s) for inverse cosine, such as INV COS , ARCCOS , or ACOS .
On some calculators, COS^-1 is pressed first, then ( (-) 0.39 ) ; while
other calculators the sequence is reversed with ( (-) 0.39 ) pressed
first, then COS^-1 . Verify with your calculator’s manual.

(b) tan−1 12

Solution. First verify the mode of the calculator is in radians. Then,
using the appropriate key for inverse tangent, press the following keys
TAN^-1 ( 12 ) ENTER to get

tan−1 12 ≈ 1.48765509491

(c) sin−1 0.8

Solution. First verify the mode of the calculator is in radians. Then,
using the appropriate key for inverse sine, press the following keys
SIN^-1 ( 0.8 ) ENTER to get

sin−1 0.8 ≈ 0.927295218002

□
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Example 2.4.17 Swells Approaching Paikea. At the start of this section,
we discussed the swells passing through Paikea in the following order: 1) port
stern (back left); 2) starboard stern (back right); 3) port bow (front left); and
4) starboard bow (front right). Given that Paikea is 14.8 m (50 ft) in length
and 6.2 m (20 ft) in width, what is the possible range of headings from which
the swells may be approaching?
Solution. If the swells are moving directly north, the heading will be 0◦.

To find the other boundary, we want to determine the angle at which the
swell simultaneously intersects both the starboard stern and port bow as it
passes beneath the vaka. This angle, denoted as θ, is formed between the side
adjacent to the 14.8 m length of the canoe and the diagonal. Using the tangent
function we have:

tan θ = 14.8
6.2

Solving for θ using the inverse tangent function we get:

tan−1
(

14.8
6.2

)
≈ 67.27◦

Therefore, the possible range of headings from which the swells may be
approaching is between 0◦ (directly north) and approximately 67.27◦. □

Example 2.4.18 A gift for Mau. In 1999, after Mau Pialug, also known as
Papa Mau, sailed from Hawai‘i to his home in Satawal, Micronesia aboard the
Makali‘i, the crew of Nā Kālai Wa‘a expressed their gratitude to the man who
shared his knowledge of navigation by constructing a sister canoe to Makali‘i.
This vessel, named the Alingano Maisu, was a 56-foot long double-hulled
voyaging canoe. In 2007, accompanied by the Hōkūle‘a, the Alingano Maisu
embarked on its inaugural journey to Satawal, continuing Papa Mau’s legacy of
navigation in his home islands.

During this journey, the canoes sailed directly towards Johnston Atoll, using
it as a sighting point without making a stop, before proceeding to their first
destination in Majuro, Marshall Islands. The island of Majuro is situated 1,108
nautical miles west and 575 nautical miles south of Johnston Atoll.

What house do you need to sail in and what distance will you need to
sail? If the wa‘a travels at 5 knots, how many days will it take to reach the
destination? Note that 1 knot = 1 nautical mile/hour.

Majuro

Johnston Atoll

course

1,108 NM

575 NM

θ
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We will use the tangent function because we are given the side opposite to
θ (575 NM) and the side adjacent to θ (1,100 NM) and express it as

tan θ = 575
1, 100

Solution. Since we were able to write tan θ = 575
1,108 , we can use a calculator

or other technology to evaluate the inverse tangent to find our angle:

θ = tan−1
(

575
1, 108

)
≈ 27.4◦.

Because this angle is in Quadrant III, we find its value on the Unit Circle by
adding 180◦ + 27.4◦ = 207.4◦. Next we refer to the Star Compass with angles
(Figure 1.2.4) to conclude we will need to sail towards the House ‘Āina Kona.

To determine the distance, d, we use the Pythagorean Theorem:

d =
√

5752 + 1, 1082 ≈ 1, 248NM.

Finally, we note that since (speed) = (distance)/(duration), we can rearrange
the terms to get (duration) = (distance)/(speed). If we travel at 5 knots (5
NM/hr), we can calculate the duration as

duration =1, 248.3 NM
5 kt

distance
speed

=1, 248.3 NM
5 NM/hr 1 kt=1 NM/hr

=249.7 hours NM
NM/hr = NM · hr

NM = hr

=249.7 hours · day
24 hours

≈10.4 days.

□

Example 2.4.19 Finding Land. As Hōkūle‘a is sailing towards Rapa
Nui, the navigator uses a process called dead reckoning to determine their
position based on the latitude, measured by the stars, and other factors such
as the estimated distance traveled, speed, and direction. Once the navigator
has determined they are in the vicinity of land, her attention is now focused
on looking for signs of land. One method navigators will use is to look for
land-based seabirds such as the manu-o-kū (fairy tern) and the noio (noddy
tern), which go out to sea in the morning to fish and return to land at night.
However, Rapa Nui’s seabird population has been reduced so she will look for
other signs such as drifting land vegetation; clouds that form over islands; the
loom of the island when white sand and still lagoons reflect the sun or moon
upwards; and distinctive patterns of swells bending (refracting) around and/or
reflecting off islands. Land will be spotted when the navigator first sees Maunga
Terevaka, the tallest point in Rapa Nui, which stands at 1,665 ft. Figure 2.4.20
depicts the relation between the canoe and island (left) as well as what is seen
from the deck of the canoe (right).
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Figure 2.4.20 Watch as the canoe approaches an island from two different
views. On the left, see a side view as the island gradually comes into sight over
the horizon. On the right, experience the perspective from the canoe’s deck,
observing the island appearing to rise from the water. This dual perspective
provides a unique glimpse into the legend of Maui, the demigod who pulled the
islands from the ocean with his fish-hook.

1. On the deck of Hōkūle‘a, a navigator stands at 9 ft above sea level. If she
looks out to the sea, how far is she from horizon? Assume the radius of
the earth at Rapa Nui is 20,911,171 feet.

2. How far is Hōkūle‘a from Maunga Terevaka when it first becomes visible
over the horizon to someone standing 9ft above sea level?

Solution.

1. We begin by assuming that the earth is a sphere with radius R. Standing
on Hōkūle‘a, the line from the navigator’s eye to the horizon is tangent
to the circle of radius R.

RR

h

θ1

s1

Here h = 9 ft, represents the height of the navigator’s eye above sea level,
R = 20, 911, 171 ft is the radius of the earth at Rapa Nui, and s1 is the
arc length or distance along the surface of the earth from the navigator to
the horizon. We have written the distances in feet since the height of the
navigator is in feet. Recall from Theorem 1.2.25 the formula for finding
the arc length is s1 = 2πR ·

(
θ1

360
)
. Since we know R, we only need to find

θ1. Notice this forms a right triangle.
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R

R+h

θ1

Since we know the adjacent side and hypotenuse of this triangle, we can
use cosine:

cos θ1 = R

R + h
= 20, 911, 171

20, 911, 171 + 9 = 20, 911, 171
20, 911, 180 .

To solve for θ1, we use the inverse cosine

θ1 = cos−1
(

20, 911, 171
20, 911, 180

)
≈ 0.053◦.

Now we are ready to calculate the arc length, s1:

s1 = 2π · 0.053◦

360◦ · 20, 911, 171 feet ≈ 19, 343 feet.

Converting to miles we get

s1 ≈ 19, 401 feet · 1 mile
5, 280 feet ≈ 3.7miles.

So the horizon is 3.7 miles from the navigator.

2. Next, to determine how far the navigator is from Maunga Terevaka when
it emerges over the horizon, we need to align the top of the mountain
with line from the navigator’s eye to the horizon.

R

R

H

θ2

R

h

θ1

s2
s1

Here, H = 1, 665 ft, is the height of Maunga Terevaka. To find the
distance from the top of the mountain to the horizon, we will need to
determine s2. We begin by redrawing the triangle.
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R

R+H

θ2

The angle is then given by

θ1 = cos−1
(

R

R + H

)
= cos−1

(
20, 911, 171

20, 911, 173 + 1, 665

)
= cos−1

(
20, 911, 171
20, 912, 836

)
≈ 0.723◦

We conclude that the distance from Maunga Terevaka to the horizon is

s2 = 2π · 0.723◦

360◦ · (20, 911, 171 feet) · 1 mile
5, 280 feet ≈ 50.0 miles

Therefore, the total distance between the navigator and Maunga Terevaka
is s1 + s2 = 3.7 + 50.0 = 53.7 miles. Please note that this is the distance
when the island may first be seen, however, weather conditions may reduce
visibility.

□

2.4.4 Graphs of Inverse Trigonometric Functions
Recall from algebra that

1. The point (a, b) is on the graph of f if and only if the point (b, a) is on
the graph of f−1.

2. The graphs of f−1 and f are reflections of each other about the line y = x

The graph of each inverse trigonometric function can be obtained by reflect-
ing the graph of the original function about the line y = x.
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)
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π
2

π
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y
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−1 1

−1

1

f(x) = tan x

f(x) = tan−1 x

y = − π
2

y = π
2

x = − π
2 x = π

2

x

y

2.4.5 Composition of Inverse Trigonometric Functions
Recall Algebra that if f is a one-to-one function with inverse f−1, then

1. f(f−1(y)) = y for every y in the domain of f−1

2. f−1(f(x)) = x for every x in the domain of f

In terms of trigonometric functions, f(f−1(y)) = y will work for all y in
the domain, however, we need to be careful when evaluating f−1(f(x)) = x
because the domain of f−1 is restricted.

Definition 2.4.21 Properties of Composition of Trigonometric Func-
tions.

sin(sin−1 x) = x when −1 ≤ x ≤ 1
cos(cos−1 x) = x when −1 ≤ x ≤ 1
tan(tan−1 x) = x when −∞ ≤ x ≤ ∞
sin−1(sin x) = x only when − π

2 ≤ x ≤ π
2

cos−1(cos x) = x only when 0 ≤ x ≤ π

tan−1(tan x) = x only when − π
2 ≤ x ≤ π

2

♢

Example 2.4.22 Composition of trigonometric function and the
inverse of the same trigonometric function. Find the exact value of each
expression

(a) cos−1 (
cos π

8
)

Solution. Since π
8 is in the interval [0, π], then from the properties of

compositions of inverse functions, we get

cos−1
(

cos π

8

)
= π

8

(b) tan(tan−1 7)
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Solution. Since 7 is in the interval (−∞, ∞),

tan(tan−1 7) = 7

(c) sin−1 (
sin

(
− π

7
))

Solution. Since − π
7 is in the interval

[
− π

2 , π
2

]
,

sin−1
(

sin
(

−π

7

))
= −π

7

(d) sin−1 (
sin 4π

5
)

Solution. Note that 5π
7 is not in the interval

[
− π

2 , π
2

]
. In order to

evaluate the expression, we first need to find an angle, θ, such that − π
2 ≤

θ ≤ π
2 and sin 5π

7 = sin θ. Since π
2 < 5π

7 < π means 5π
7 is in Quadrant II.

Recall from Section 1.3 that our reference angle is θ = π − 5π
7 = 2π

7 .

x

y

5π
72π

7
2π
7

Since 2π
7 is in the interval

[
− π

2 , π
2

]
,

sin−1
(

sin 5π

7

)
= sin−1

(
sin 2π

7

)
= 2π

7

(e) cos(cos−1(−0.283))

Solution. Since −0.283 is in the interval [−1, 1],

cos(cos−1(−0.283)) = −0.283

□
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Now we will look at what happens when we need to evaluate the composition
of a trigonometric function and the inverse of a different trigonometric function.

Example 2.4.23 Composition of trigonometric function and the
inverse of a different trigonometric function. Find the exact value of

(a) cos
(
tan−1 ( 4

3
))

Solution. Let θ be an angle in the range of tan−1, that is, let θ be in
the interval

(
− π

2 , π
2

)
such that θ = tan−1 ( 4

3
)
. This equation is equivalent

to tan θ = 4
3 . Since tan θ > 0, we know that θ must be in Quadrant I(

0 < θ < π
2

)
. Let (x, y) be a point on the terminal side of θ, then by the

trigonometric ratios,
tan θ = opposite

adjacent = y

x

Since we have tan θ = 4
3 , we get x = 3 and y = 4, as shown in the figure

below.

x

y

θ

(x, y) = (3, 4)

x = 3

y = 4
r

Evaluating cos
(
tan−1 4

3
)

is equivalent to evaluating

cos θ = adjacent
hypotenuse = 3

r
,

where r =
√

x2 + y2 =
√

32 + 42 =
√

9 + 16 =
√

25 = 5. So,

cos
(

tan−1 4
3

)
= cos θ = 3

5
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(b) sin
(
cos−1 (

− 3
8
))

Solution. Let θ be an angle in the range of cos−1, that is, let θ be in
the interval [0, π] such that θ = cos−1 (

− 3
8
)
. This equation is equivalent

to cos θ = − 3
8 . Since cos θ < 0, we know that θ must be in Quadrant II(

π
2 ≤ θ ≤ π

)
. Let (x, y) be a point on the terminal side of θ, then by the

trigonometric ratios,

cos θ = adjacent
hypotenuse = x

r

Since we have cos θ = − 3
8 , we get x

r = − 3
8 which gives us either x = −3

and r = 8 or x = 3 and r = −8. Since θ is in Quadrant II, we know that
x is negative, thus x = −3 and r = 8, as shown in the figure below.
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x

y

θ

(x, y)

x = −3

y
r = 8

Evaluating sin
(
cos−1 (

− 3
8
))

is equivalent to evaluating

sin θ = opposite
hypotenuse = y

8 ,

where

r2 = x2 + y2

82 = (−3)2 + y2

64 = 9 + y2
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y2 = 55

Thus y =
√

55. So,

sin
(

cos−1 −3
8

)
= sin θ =

√
55
8

Note this is positive since sine is positive in Quadrant II.

□

2.4.6 Exercises

Exercise Group. What are the domain and range of
1. y = sin x

Answer. D: −∞ < x < ∞;
R: −1 ≤ y ≤ 1

2. y = sin−1 x

Answer. D: −1 ≤ y ≤ 1; R:
− π

2 ≤ y ≤ π
2

3. y = cos x

Answer. D: −∞ < x < ∞;
R: −1 ≤ y ≤ 1

4. y = cos−1 x

Answer. D: −1 ≤ y ≤ 1; R:
−0 ≤ y ≤ π

Exercise Group. Determine the exact value of each expression, expressed in
radians.

5. tan−1 (0)
Answer. 0

6. tan−1 (
−

√
3
)

Answer. − π
3

7. cos−1
(

−
√

2
2

)
Answer. 3π

4

8. sin−1
( √

2
2

)
Answer. π

4

9. tan−1 (−1)
Answer. − π

4

10. sin−1
( √

3
2

)
Answer. π

3

11. cos−1 (−1)
Answer. π

12. cos−1
( √

2
2

)
Answer. π

4

13. sin−1 (1)
Answer. π

2

14. sin−1
(

−
√

3
2

)
Answer. − π

3

15. cos−1 (
− 1

2
)

Answer. 2π
3

16. tan−1
( √

3
3

)
Answer. π

6

Exercise Group. Use a calculator to approximate each expression. Provide
your answer in radians, rounding to two decimal places.

17. cos−1
( √

5
3

)
Answer. 0.73

18. sin−1 (0.63)
Answer. 0.68

19. tan−1 (√
7
)

Answer. 1.21

20. sin−1
( √

2
9

)
Answer. 0.16

21. tan−1 (0.7)
Answer. 0.61

22. cos−1 (−0.9)
Answer. 2.69

23. sin−1 (−0.6)
Answer. −0.64

24. cos−1 ( 1
4
)

Answer. 1.32
25. cos−1 (−0.4)

Answer. 1.98
26. tan−1 (−45.6)

Answer. −1.55
27. sin−1 (−0.8)

Answer. −0.93
28. tan−1 (78.9)

Answer. 1.56

Exercise Group. In Exercise Group 1.4.7.1–8, we determined the values of
the six trigonometric functions for each triangle. Now, use a calculator to find
the value of θ in degrees, rounding to two decimal places.
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29.

3

5 4

θ

Answer. 53.13◦

30.

5

√
74

7

θ

Answer. 35.54◦

31.

4

6

θ

Answer. 56.31◦

32.

1312

θ

Answer. 22.62
33.

7

14

θ

Answer. 63.43◦

34.

4

4

θ

Answer. 45◦



CHAPTER 2. GRAPHS OF THE TRIGONOMETRIC FUNCTIONS 175

35.

2

√
10

θ

Answer. 50.77◦

36.

2

3

θ

Answer. 33.69◦

Exercise Group. Use properties of composition of trigonometric functions to
find the exact value of each expression. Write “not defined” if no value exists.

37. sin−1 (
sin π

7
)

Answer. π
7

38. cos−1 (
cos

(
− π

7
))

Answer. π
7

39. sin(sin−1(−0.8))
Answer. −0.8

40. tan−1 (
tan

(
− 2π

9
))

Answer. − 2π
9

41. cos(cos−1 1.4)
Answer. Not
defined

42. sin(sin−1 0.74)
Answer. 0.74

43. tan(tan−1 24)
Answer. 24

44. cos−1 (
cos

(
− π

5
))

Answer. π
5

45. tan(tan−1(−4.3))
Answer. −4.3

46. tan−1 (
tan π

8
)

Answer. π
8

47. cos(cos−1 0.39)
Answer. 0.39

48. sin−1 (
sin 4π

5
)

Answer. π
5

Exercise Group. Find the exact value of each composite function. Write
“not defined” if no value exists. You may find Table 1.5.18 useful.

49. sin
(
cos−1 1

2
)

Answer.
√

3
2

50. cot
(

sin−1
(

−
√

3
2

))
Answer. −

√
3

3

51. csc
(
tan−1 1

)
Answer.

√
2

52. sec
(
sin−1 (

− 1
2
))

Answer. 2
√

3
3

53. cos
(
tan−1 (

−
√

3
))

Answer. 1
2

54. tan
(
cos−1 0

)
Answer. Not defined

Exercise Group. Find the exact value of each composite function. Write
“not defined” if no value exists.

55. sin
(
tan−1 3

4
)

Answer. 3
5

56. csc
(

cos−1
√

3
7

)
Answer. 7

√
46

46

57. sec
(
tan−1 (

−
√

5
))

Answer.
√

6
58. cos

(
sin−1

√
7

3

)
Answer.

√
2

3

59. tan
(
sin−1 (

− 1
3
))

Answer. −
√

8
8

60. cot
(
cos−1 (

− 2
5
))

Answer. − 2
√

21
21
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61. tan
(
csc−1 ( 9

8
))

Answer. 8
√

17
17

62. sec
(
sin−1 (

− 2
5
))

Answer. 3
√

2
4

Exercise Group. Utilizing the fact that x = x
1 and sketching a right triangle,

find the exact value of the expression in terms of x.
63. cos

(
tan−1 x

)
Answer.

√
x2+1

x2+1

64. sin
(
cos−1 x

)
Answer.

√
1 − x2

65. sec
(
sin−1 x

)
Answer.

√
1−x2

1−x2

66. sin
(
sec−1 x

)
Answer.

√
x2−1
x

Exercise Group. Graph the function.
67. y = 4 cos−1 x

Answer.

−1 −0.5 0.5 1

π

2π

3π

4π

x

y

68. y = tan−1 x + π
2

Answer.

−10 −5 5 10
− π

2

π
2

π

3π
2

x

y

69. y = sin−1( 1
2 x)

Answer.

−2 −1 1 2

− π
2

− π
4

π
4

π
2

x

y

70. y = − sin−1(x − 1)
Answer.

0.5 1 1.5 2

− π
2

− π
4

π
4

π
2

x

y

71. Sunrise on Mauna Kea.The summit of Mauna Kea is the highest point
in Hawai‘i and sits 13,803 ft above the sea level. If you stand at the
summit, you will be able to see the sun rise before someone standing at the
sea level just north or south of Mauna Kea (at the same latitude). In fact,
you will see the sunrise at the same time as someone at sea level sailing
in a wa‘a to the east of Mauna Kea. Assume the radius of the earth is
20,917,655 feet.

(a) How far is the horizon when someone 5 ft tall stands at sea level to
watch the sun rise? Round your answer to the nearest tenth of a
mile.

Answer. 2.7 miles

(b) How far is the horizon when someone 5 ft tall stands on the summit
to watch the sunrise? Round your answer to the nearest tenth of a
mile.
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Answer. 143.9 miles

(c) How much faster would someone 5 ft tall standing on the top of the
mountain see the sunrise than someone 5 ft tall standing at sea level?
Express your answer in minutes, rounded to one decimal place.

Hint. The ratio of the distance to the horizon (your previous
answers) to the circumference of the Earth (2πR) is equal to the
ratio of the time it takes to see the sunrise to the 24 hours (1,440
minutes) in Earth’s rotation. Compute the time it takes to see the
sunrise from the top of the mountain and the shore, then calculate
the difference.

Answer. 8.2 minutes
72. Maui Capturing the Sun.According to mo‘olelo, or legend, the sun

traveled very fast across the sky, leaving people with days so short there
was not enough time to carry on with their daily lives. Determined to slow
the sun, the demigod Maui climbed to the summit of Haleakalā, which
stands at 10,023 feet, to snare the sun. Assume the radius of the Earth at
Haleakalā is the same as Mauna Kea at 20,917,655 feet.

R

R

h

θ

s

Sun

(a) How far is the horizon when Maui stands at the summit? Assume
Maui’s eyes are 5 ft from the ground. Round your answer to the
nearest tenth of a mile.

Answer. 122.6 miles

(b) How much faster would Maui see the sun emerge over the horizon
than someone 5 ft tall and standing at the seashore? Espress your
answer in minutes, rounded to one decimal place.

Answer. 6.9 minutes



Chapter 3

Analytic Trigonometry

3.1 Trigonometric Identities
In this chapter, we explore trigonometric identities and formulas, essential tools
that enable us to algebraically manipulate and solve complex trigonometric
equations. These identities and formulas enable us to analyze expressions in
various forms, often simplifying complex expressions into ones that are easily
solvable and interpretable. By doing so, we increase our ability to accurately
model the world around us.

3.1.1 Fundamental Trigonometric Identities
An identity in mathematics is an equation that remains true for every valid
values of its variables. We begin by reviewing some of the basic trigonometric
identities from Chapter 1 , collectively known as the fundamental trigonometric
identities.
Definition 3.1.1 The fundamental trigonometric identities are

1. Reciprocal Identities (Definition 1.4.2)

sin θ = 1
csc θ

cos θ = 1
sec θ

tan θ = 1
cot θ

csc θ = 1
sin θ

sec θ = 1
cos θ

cot θ = 1
tan θ

2. Quotient Identities (Definition 1.4.3)

tan θ = sin θ

cos θ
cot θ = cos θ

sin θ

3. Pythagorean Identities (Definition 1.5.20)

sin2 θ + cos2 θ = 1
1 + tan2 θ = sec2 θ

1 + cot2 θ = csc2 θ

4. Odd-Even Identities (Definition 1.5.22)
The cosine and secant functions are even

cos(−θ) = cos θ sec(−θ) = sec θ

178
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The sine, cosecant, tangent, and cotangent functions are odd

sin(−θ) = − sin θ csc(−θ) = − csc(θ)
tan(−θ) = − tan θ cot(−θ) = − cot(θ)

5. Cofunction Identities (Definition 1.4.7)

sin θ = cos
(π

2 − θ
)

, cos θ = sin
(π

2 − θ
)

tan θ = cot
(π

2 − θ
)

, cot θ = tan
(π

2 − θ
)

sec θ = csc
(π

2 − θ
)

, csc θ = sec
(π

2 − θ
)

♢

3.1.2 Simplifying Trigonometric Expressions
We use a combination of trigonometric identities, formulas, and techniques from
algebra to manipulate and simplify trigonometric expressions.

Example 3.1.2 Simplify
tan2(x) · csc2(x)

Solution. We can simplify this expression by writing each function in terms
of sine and cosine functions

tan2(x) · csc2(x) = sin2(x)
cos2(x) · 1

sin2(x)
= 1

cos2(x) = sec2(x)

□

Example 3.1.3 Simplify

sin2(x)(cot2(x) − 1)

Solution. We can simplify this expression by first using the Pythagorean
Identity and then using the Reciprocal Identity:

sin2(x)(cot2(x) − 1) = sin2(x)(− csc2(x)) = sin2(x)
(

− 1
sin2(x)

)
= −1

□

3.1.3 Verifying Trigonometric Identities
To verify trigonometric identities, we begin with an expression on one side of
the equation and manipulate it using trigonometric identities and algebraic
techniques until it matches the expression on the other side.

Remark 3.1.4 Steps for Verifying Trigonometric Identities. To verify
that an equation is an identity:

1. Pick an expression on one side of the equation. Often it is the more
complicated expression.

2. Transform the expression using techniques such as trigonometric identi-
ties, rewriting in terms of sine and cosine functions, factoring, common
denominator, or multiplying numerator and denominator by the same
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term.

3. Continue manipulating until the transformed expression matches the other
side of the equation.

4. If you have trouble making one side resemble the other, try manipulating
both sides separately, and make them match to reach the same result.

Note: Unlike solving equations where we perform the same operation on
both sides of the equal sign, when verifying trigonometric identities, we work
with only one side and manipulate it to resemble the other side.
Example 3.1.5 Verify the Identity by Rewriting in Terms of Sine
and Cosine. Verify the identity

sin(x)
tan(x) = cos(x)

Solution. We use the Quotient Identity to rewrite tan(x) in terms of sin(x)
and cos(x):

sin(x)
tan(x) = sin(x)

sin(x)
cos(x)

=���sin(x) · cos(x)
���sin(x) = cos(x).

□

Example 3.1.6 Verify the Identity by Factoring. Verify the identity

cos4(x) + sin2(x) cos2(x) = cos2(x).

Solution. First notice that both terms in cos4(x) + sin2(x) cos2(x) contain
cos2(x). Then

cos4(x) + sin2(x) cos2(x) = cos2(x) · cos2(x) + sin2(x) cos2(x)
= cos2(x) ·

(
cos2(x) + sin2(x)

)
= cos2(x) · 1
= cos2(x)

□

Example 3.1.7 Verify the Identity by Odd-Even Properties. Verify
the identity

cos(x) − sin(x)
cos(−x) + sin(−x) = 1

Solution. By the Odd-Even Properties, we have sin(−x) = − sin(x) and
cos(−x) = cos(x). Thus,

cos(x) − sin(x)
cos(−x) + sin(−x) = cos(x) − sin(x)

cos(x) − sin(x) = 1

□

Example 3.1.8 Verify the Identity by Multiplying the Numerator
and Denominator by the Same Term. Verify the identity

sin(x)
sin(x) + cos(x) = 1

1 + cot(x)
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Solution. Multiplying both the numerator and denominator by 1
sin(x) , we get

sin(x)
sin(x) + cos(x) ·

1
sin(x)

1
sin(x)

=
���sin(x) · 1

���sin(x)

���sin(x) · 1
���sin(x) + cos(x) · 1

sin(x)

= 1
1 + cos(x)

sin(x)

= 1
1 + cot(x)

□

Example 3.1.9 Verify the Identity by Manipulating Both Sides
Separately. Verify the identity

1 − cos x

1 + cos x
= (csc x − cot x)2.

Solution. We begin by simplifying the right-hand side of the equation

(csc x − cot x)2 = csc2 x − 2 csc x cot x + cot2 x

= csc2 x + cot2 x − 2 csc x cot x

= csc2 x + cot2 x − 2 1
sin x

cos x

sin x

= csc2 x + cot2 x − 2 cos x

sin2 x
.

Next, we will manipulate the left-hand side of the equation to get it to look
like csc2 x + cot2 x − 2 cos x

sin2 x .

1 − cos x

1 + cos x
= (1 − cos x)(1 − cos x)

(1 + cos x)(1 − cos x)

= 1 − 2 cos x + cos2 x

1 − cos2 x

= 1 + cos2 x − 2 cos x

sin2 x

= 1
sin2 x

+ cos2 x

sin2 x
− 2 cos x

sin2 x

= csc2 x + cot2 x − 2 cos x

sin2 x
.

Thus, since the left-hand side and the right-hand side of the equation can
both be manipulated to csc2 x+cot2 x−2 cos x

sin2 x , we have established the identity.
□

3.1.4 Exercises

Exercise Group. Verify the identity.
1. cos θ sec θ = 1
2. cos x csc x = cot x

3. cos θ sec θ
tan θ = cot θ

4. cot t tan t
csc t = sin t

5. (1 + tan θ)(1 − tan θ) + sec2 θ = 2
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6. 1 − sin2(x) = cos2(x)
7. 1 − sec2(θ) = − tan2(θ)
8. tan(t) · cot(t) = 1
9. (sin θ + cos θ)2 = 1 + 2 sin θ cos θ

10. (1 − cot θ)2 = csc2 θ − 2 cot θ

11. sin θ
csc θ + cos θ

sec θ = 1

12. sin2 t(csc2 t + sec2 t) = sec2 t

13. sin2(x) − sin2(x) cos2(x) = sin4(x)
14. sin2(−x) + cos2(−x) = 1
15. cos(−t) + sin(−t) = cos(t) − sin(t)
16. (sin θ + cos θ)2 − 2 sin θ cos θ = 1
17. cot2 x(sec2 x − 1) = 1
18. (1 + sin(t))(1 + sin(−t)) = cos2 t

19. tan4 θ = tan2 θ sec2 θ − tan2 θ

20. 1
1−sin x + 1

1+sin x = 2 sec2 x

21. 1
csc t+1 − 1

csc t−1 = −2 tan2 t

22. 1
1−cos θ + 1

1+cos θ = 2 csc2 θ

23. 1
1−cos θ + 1

1+cos θ = 2 + 2 cot2 θ

24. 1−cos2 x
cos x = sin x tan x

25. 1 − cos2 θ
1+sin θ = sin θ

26. sec2 t + csc2 t = csc2 t sec2 t

27. 1+tan x
1−tan x = cot x+1

cot x−1

28. cos θ
1−sin θ = 1+sin θ

cos θ

29. 1 − cos2 t
1+sin t = sin t

30. 1+cos θ
cos θ = tan2 θ

sec θ−1



CHAPTER 3. ANALYTIC TRIGONOMETRY 183

3.2 Addition and Subtraction Formulas
In Section 1.4, we used right triangles to determine the deviation of a wa‘a
(canoe) from its course based on the angle of deviation. If a wa‘a sails for 120
nautical miles (NM), we were able to calculate the deviation from its course
using right triangles to get the equation:

deviation = (120 NM) · sin(θ).

start

end

120 NM

reference course

deviation
θ

Before setting sail, a voyager studies a table listing the deviation distances
corresponding to different houses of deviation. It’s crucial to understand
that while adding angles may yield a third angle, adding their corresponding
deviations will not accurately determine the total deviation. In other words:

sin(α) + sin(β) ̸= sin(α + β)

for some angles of deviation α and β.
To illustrate this, let’s calculate the deviation distances for 1, 2, and 3

houses respectively. Using the given formula, we have:

120 sin(1 house) = 120 sin(11.25◦) ≈ 23.4 NM
120 sin(2 houses) = 120 sin(22.5◦) ≈ 45.9 NM
120 sin(3 houses) = 120 sin(33.75◦) ≈ 66.7 NM

start
1 house, 120 NM2 houses,

120 NM
3 houses,

120
NM

reference course

23.4 NM

45.9 NM

66.7 NM

However,

120 sin(1 house) + 120 sin(2 houses) ≈ 23.4 + 45.9 NM ≈ 69.3 NM,

which differs from the actual deviation of 66.7 NM when deviating by 3 houses.
hese calculations demonstrate that the deviation distances for multiple

houses cannot be determined by simply adding individual deviations, high-
lighting the importance of understanding trigonometric principles for accurate
navigation. In this section, we will explore formulas for the addition and
subtraction of angles in trigonometric functions.
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3.2.1 Addition and Subtraction Formulas for Cosine
First we will derive the addition and subtraction formulas for the cosine function.
Definition 3.2.1 Addition and Subtraction Formulas for Cosine.

cos(α + β) = cos α cos β − sin α sin β

cos(α − β) = cos α cos β + sin α sin β

♢

Proof. First we will prove the Subtraction Formula for Cosine

cos(α − β) = cos α cos β + sin α sin β.

We begin by considering two points on the unit circle. Point P is at an angle
of β in standard position with coordinates (cos β, sin β) and point Q is at an
angle of α in standard position with coordinates (cos α, sin α).

x

y

O

Q(cos α, sin α)

P (cos β, sin β)

α
β

α − β

We use the Distance Formula to calculate the distance between P and Q to get

d(P, Q) =
√

(cos α − cos β)2 + (sin α − sin β)2

=
√

cos2 α − 2 cos α cos β + cos2 β + sin2 α − 2 sin α sin β + sin2 β

=
√

(cos2 α + sin2 α) + (cos2 β + sin2 β) − 2 cos α cos β − 2 sin α sin β

Then by the Pythagorean Identity (Definition 1.5.20), cos2 α + sin2 α = 1 and
cos2 β + sin2 β = 1. Thus the distance becomes

d(P, Q) =
√

1 + 1 − 2 cos α cos β − 2 sin α sin β
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=
√

2 − 2 cos α cos β − 2 sin α sin β

Next, consider two additional points on a second unit circle. Point A has
coordinates at (1, 0) and Point B is at an angle of α − β in standard position
with coordinates (cos(α − β), sin(α − β)).

x

y

O

A(1, 0)

B(cos(α − β), sin(α − β))

α − β

The distance between A and B is

d(A, B) =
√

(cos(α − β) − 1)2 + (sin(α − β) − 0)2

=
√

cos2(α − β) − 2 cos(α − β) + 1 + sin2(α − β)

=
√

(cos2(α − β) + sin2(α − β)) − 2 cos(α − β) + 1

=
√

1 − 2 cos(α − β) + 1

=
√

2 − 2 cos(α − β)

Note that since OP , OQ, OA, and OB are lines from the center to points on the
unit circle, they are congruent and have length of 1. Also note that ∠POB =
∠AOB = α − β. Then since two sides and the included angle of ∆OPQ and
∆OAB are equivalent, we can conclude by the Side-Angle-Side Theorem (SAS)
in geometry that the two triangles are congruent. Thus, corresponding sides
have the same lengths, giving us: d(PQ) = d(AB). Substituting our results for
d(P, Q) and d(A, B) we get

d(PQ) = d(AB)√
2 − 2 cos α cos β − 2 sin α sin β =

√
2 − 2 cos(α − β)

2 − 2 cos α cos β − 2 sin α sin β = 2 − 2 cos(α − β)
−2 cos α cos β − 2 sin α sin β = −2 cos(α − β)
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Dividing both sides by -2 we arrive at the Subtraction Formula for Cosine

cos α cos β + sin α sin β = cos(α − β)

To prove the Addition Formula for Cosine, replace β with −β in the Subtraction
Formula and use the Even and Odd Trigonometric Properties (Definition 1.5.22)
where sin(−β) = − sin β and cos(−β) = cos β to get

cos α cos(−β) + sin α sin(−β) = cos(α − (−β))
cos α cos(β) + sin α(− sin β) = cos(α + β)

cos α cos β − sin α sin β = cos(α + β)

■

Example 3.2.2 Find the exact value of cos 105◦.
Solution. First note that 105◦ = 60◦ + 45◦. Now, using the Addition Formula
for Cosine (Definition 3.2.1),

cos 105◦ = cos(60◦ + 45◦)
= cos 60◦ cos 45◦ − sin 60◦ sin 45◦

= 1
2 ·

√
2

2 −
√

3
2

√
2

2
= 1

4

(√
2 −

√
6
)

□

Example 3.2.3 Find the exact value of cos
(

π
4 − π

6
)
.

Solution. Using the Subtraction Formula for Cosine we get

cos
(π

4 − π

6

)
= cos π

4 cos π

6 + sin π

4 sin π

6

=
√

2
2 ·

√
3

2 +
√

2
2 · 1

2
= 1

4

(√
6 +

√
2
)

□

Example 3.2.4 Find the exact value of the expression cos 25◦ cos 35◦ −
sin 25◦ sin 35◦.
Solution. Notice this expression is the Addition Formula for Cosine with
α = 25◦ and β = 35◦. So

cos 25◦ cos 35◦ − sin 25◦ sin 35◦ = cos(25◦ + 35◦) = cos 60◦ = 1
2

□

3.2.2 Addition and Subtraction Formulas for Sine
Next we will learn about the addition and subtraction formulas for the sine
function.
Definition 3.2.5 Addition and Subtraction Formulas for Sine.

sin(α + β) = sin α cos β + cos α sin β

sin(α − β) = sin α cos β − cos α sin β
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♢
We will prove the Addition Formula for Sine in Example 3.2.10 and the

Subtraction Formula can be established using the Even and Odd Properties
(Definition 1.5.22).

Example 3.2.6 Given sin α = − 12
13 , with 3π

2 < α < 2π and cos β = − 3
5 , with

π
2 < β < π, find the exact value of sin(α + β).
Solution. The Addition Formula for Sine gives us

sin(α + β) = sin α cos β + cos α sin β

At this moment, we do not know the exact values of cos α and sin β but we
can compute them.

Given sin α = − 12
13 with 3π

2 < α < 2π and cos β = − 3
5 with π

2 < β < π, we
can draw the following triangles associated with α and β, respectively:

x

y

x

-12
13

α

x

y

-3

y 5

β

Next, using the Pythagorean Theorem, we solve for the missing sides on the
triangles

x2 + (−12)2 = 132

x + 144 = 169
x2 = 25
x = 5
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Thus we get
cos α = 5

13

(−3)2 + y2 = 52

9 + y2 = 25
y2 = 16
y = 4

Thus we get
sin β = −4

5
We now have all the information needed to proceed.

sin(α + β) = sin α cos β + cos α sin β

=
(

−12
13

) (
−3

5

)
+

(
5
13

) (
4
5

)
= 36

65 + 20
65

= 56
65

Notice we did not have to know the values of α or β to do this example. □

3.2.3 Addition and Subtraction Formulas for Tangent
Now we will learn about the addition and subtraction formulas for the tangent
function.
Definition 3.2.7 Addition and Subtraction Formulas for Tangent.

tan(α + β) = tan α + tan β

1 − tan α tan β

tan(α − β) = tan α − tan β

1 + tan α tan β

♢

Proof. Recall that tan θ = sin θ
cos θ as long as cos θ ̸= 0. Using this fact, and our

new formulas for the sum of sine and cosine, we get

tan(α + β) = sin(α + β)
cos(α + β)

= sin α cos β + cos α sin β

cos α cos β − sin α sin β

=

sin α cos β + cos α sin β

cos α cos β
cos α cos β − sin α sin β

cos α cos β

=

sin α�
��cos β

cos α���cos β
+ ���cos α sin β

���cos α cos β

�����cos α cos β

�����cos α cos β
− sin α sin β

cos α cos β
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=

sin α

cos α
+ sin β

cos β

1 − sin α

cos α

sin β

cos β

= tan α + tan β

1 − tan α tan β

The subtraction formula can be established using the Even and Odd Properties
(Definition 1.5.22). ■

Example 3.2.8 Find the exact value of tan
( 3π

4 + π
6

)
Solution. Using the Addition Formula for Tangent (Definition 3.2.7), we get

tan
(

3π

4 + π

6

)
=

tan 3π
4 + tan π

6
1 − tan 3π

4 tan π
6

=
(−1) +

√
3

3

1 − (−1) ·
√

3
3

=
−1 +

√
3

3

1 +
√

3
3

=
−3+

√
3

3
3+

√
3

3

= −3 +
√

3
3 +

√
3

□

3.2.4 Cofunction Identities
Recall the Cofunction Identities (Definition 1.4.7):

sin θ = cos
(π

2 − θ
)

, cos θ = sin
(π

2 − θ
)

tan θ = cot
(π

2 − θ
)

, cot θ = tan
(π

2 − θ
)

sec θ = csc
(π

2 − θ
)

, csc θ = sec
(π

2 − θ
)

Armed with the knowledge of the subtraction formulas, we can prove the
Cofunction Identities.
Proof. We will prove the Cofunction Identity for sin θ in Example 3.2.9. The
proof for cos θ is given as Exercise 3.2.7.97. The Cofunction Identities for tan θ
and cot θ can be found using the Quotient Identities (Definition 1.4.3) for csc θ
and sec θ can be found using the Reciprocal Identities (Definition 1.4.2). ■

Example 3.2.9 Use the Subtraction Formula for Sine to establish the identity
cos θ = sin

(
π
2 − θ

)
.

Solution. To establish an identity, we will start from one side of the equality
and use properties to end up with the expression on the other side of the
equality. So,

sin
(π

2 − θ
)

= sin
(π

2

)
cos (θ) − cos

(π

2

)
sin (θ)
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= 1 · cos (θ) − 0 · sin (θ)
= cos (θ)

Visually, we have cos θ = x
r = sin

(
π
2 − θ

)
:

x

yr

θ

π
2 − θ

□

Example 3.2.10 Prove the Addition Formula for Sine

sin(α + β) = sin α cos β + cos α sin β

Solution. We begin by using the cofunction identity

sin(α + β) = cos
(π

2 − (α + β)
)

= cos
((π

2 − α
)

− β
)

By the Subtraction Formula for Cosine:

= cos
(π

2 − α
)

cos β + sin
(π

2 − α
)

sin β

= sin α cos β + cos α sin β

where the last step we use the Cofunction Identity. □

3.2.5 Sums of Sines and Cosines
Sometimes we may come across functions of the form

a sin x + b cos x

It can often be useful to rewrite this expression as a single trigonomteric
function.
Definition 3.2.11 For any real numbers a and b, let θ be an angle in standard
position where P (a, b) is a point on the terminal side of θ. Then

a sin x + b cos x =
√

a2 + b2 sin(x + θ).

♢

Proof. We begin by considering the triangle formed by the angle θ and point
P (a, b), shown in Figure 3.2.12. By the Pythagorean Theorem, the hypotenuse of
this triangle, with base a and height b, is

√
a2 + b2. According to Definition 1.4.1,

we have:
cos θ = a√

a2 + b2
, sin θ = b√

a2 + b2
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or equivalently:

a =
√

a2 + b2 cos θ, b =
√

a2 + b2 sin θ

x

y

P (a, b)

√
a2 + b2

a

b

θ

Figure 3.2.12 A triangle is formed by angle θ and point P (a, b).
Therefore, using the addition formula for sine, we get

a sin x + b cos x =
√

a2 + b2 cos θ sin x +
√

a2 + b2 sin θ cos x

=
√

a2 + b2 (cos θ sin x + sin θ cos x)

=
√

a2 + b2 sin(x + θ)

■

Example 3.2.13 Express

−
√

3
2 sin x + 1

2 cos x

in terms of sine only.
Solution. To express the given expression in terms of sine only, we will use
Definition 3.2.11. Considering the point P (a, b) =

(
−

√
3

2 , 1
2

)
, which lies in

Quadrant II, we determine the angle θ. Using either Table 1.5.18 or inverse
trigonometric methods where

tan θ = b

a
,

we find
θ = 150◦.

Therefore, by Definition 3.2.11, we have:

−
√

3
2 sin x + 1

2 cos x =

√(
−

√
3

2

)2

+
(

1
2

)2
sin(x + 150◦)

=
√

3
4 + 1

4 sin(x + 150◦)

= sin(x + 150◦)

□
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3.2.6 Summary
To review, the addition and subtraction formulas are

sin(α + β) = sin α cos β + cos α sin β

sin(α − β) = sin α cos β − cos α sin β

cos(α + β) = cos α cos β − sin α sin β

cos(α − β) = cos α cos β + sin α sin β

tan(α + β) = tan α + tan β

1 − tan α tan β

tan(α − β) = tan α − tan β

1 + tan α tan β

3.2.7 Exercises

Exercise Group. Use the Addition or Subtraction Formula to find the exact
value of each expression.

1. cos(15◦)
Answer.

√
6+

√
2

4

2. sin(75◦)
Answer.

√
6+

√
2

4

3. sin(195◦)
Answer. −

√
6+

√
2

4

4. tan(165◦)
Answer. 1−

√
3

1+
√

3

5. tan(105◦)
Answer. 1+

√
3

1−
√

3

6. cos(255◦)
Answer. −

√
6+

√
2

4

7. tan
( 5π

12
)

Hint. 5π
12 = π

6 + π
4

Answer. 3+
√

3
3−

√
3

8. sin
( 7π

12
)

Hint. 7π
12 = π

3 + π
4

Answer.
√

6+
√

2
4

9. cos
(

π
12

)
Hint. π

12 = π
3 − π

4

Answer.
√

6+
√

2
4

10. sin
( 13π

12
)

Hint. 13π
12 = 11π

6 − 3π
4

Answer.
√

2−
√

6
4

11. cos
( 17π

12
)

Hint. 17π
12 = π

4 + 5π
3

Answer.
√

2−
√

6
4

12. tan
(
− π

12
)

Hint. − π
12 = π

4 − π
3

Answer. 1−
√

3
1+

√
3

Exercise Group. Use the Addition or Subtraction Formula to find the exact
value of each expression.

13. sin(172◦) cos(68◦) + cos(172◦) sin(68◦)
Answer. −

√
3

2

14. sin(317◦) cos(257◦) − cos(317◦) sin(257◦)
Answer.

√
3

2

15. cos(337◦) cos(22◦) + sin(337◦) sin(22◦)
Answer. − 1

2

16. cos(59◦) cos(211◦) − sin(59◦) sin(211◦)
Answer. 0
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17. tan(85◦)−tan(25◦)
1+tan(85◦) tan(25◦)

Answer.
√

3
18. sin

( 5π
16

)
cos

(
π
16

)
− cos

( 5π
16

)
sin

(
π
16

)
Answer.

√
2

2

19. cos
( 5π

22
)

cos
( 3π

11
)

− sin
( 5π

22
)

sin
( 3π

11
)

Answer. 0

20. tan( π
7 )+tan( 4π

21 )
1−tan( π

7 ) tan( 4π
21 )

Answer.
√

3

Exercise Group. Find the exact value of each expression given

5 3

α

21

29

β

21. sin(α)
Answer. 3

5

22. cos(α)
Answer. 4

5

23. tan(α)
Answer. 3

4

24. sin(β)
Answer. 20

29

25. cos(β)
Answer. 21

29

26. tan(β)
Answer. 20

21

27. sin(α + β)
Answer. 3

5 · 21
29 + 4

5 · 20
29 = 143

145

28. cos(α + β)
Answer. 4

5 · 21
29 − 3

5 · 20
29 = 24

145

29. tan(α + β)

Answer.
3
4 + 20

21
1− 3

4 · 20
21

= 143
24

30. sin(α − β)
Answer. 3

5 · 21
29 − 4

5 · 20
29 = − 17

145

31. cos(α − β)
Answer. 4

5 · 21
29 + 3

5 · 20
29 = 144

145

32. tan(α − β)

Answer.
3
4 − 20

21
1+ 3

4 · 20
21

= − 17
24

Exercise Group. Find the exact value of each expression given
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2

√
10

α

2

3

β

33. sin(α)
Answer.

√
15
5

34. cos(α)
Answer.

√
10
5

35. tan(α)
Answer.

√
6

2

36. sin(β)
Answer. 3

√
13

13

37. cos(β)
Answer. 2

√
13

13

38. tan(β)
Answer. 3

2

39. sin(α + β)
Answer.

√
15
5 · 2

√
13

13 +
√

10
5 ·

3
√

13
13 = 2

√
195+3

√
130

65

40. cos(α + β)
Answer.

41. tan(α + β)

Answer.
√

6
2 + 3

2

1−
√

6
2 · 3

2
=

−30−13
√

6
19

42. sin(α − β)
Answer.

√
10
5 · 2

√
13

13 −
√

15
5 ·

3
√

13
13 = 2

√
130−3

√
195

65

43. cos(α − β)
Answer.

√
10
5 · 2

√
13

13 +
√

15
5 ·

3
√

13
13 = 2

√
130+3

√
195

65

44. tan(α − β)

Answer.
√

6
2 − 3

2

1+
√

6
2 · 3

2
= 30−13

√
6

19

Exercise Group. Find the exact value of each expression given

5

3

α

7

8

β
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45. sin(α)
Answer. 3

√
34

34

46. cos(α)
Answer. 5

√
34

34

47. tan(α)
Answer. 3

5

48. sin(β)
Answer.

√
15
8

49. cos(β)
Answer. 7

8

50. tan(β)
Answer.

√
15
7

51. sin(α + β)
Answer. 3

√
34

34 · 7
8 + 5

√
34

34 ·
√

15
8 = 21

√
34+5

√
510

272

52. cos(α + β)
Answer. 5

√
34

34 · 7
8 − 3

√
34

34 ·
√

15
8 = 35

√
34−3

√
510

272

53. tan(α + β)

Answer.
3
5 +

√
15
7

1− 3
5 ·

√
15
7

=
480+119

√
15

545

54. sin(α − β)
Answer. 3

√
34

34 · 7
8 − 5

√
34

34 ·
√

15
8 = 21

√
34−5

√
510

272

55. cos(α − β)
Answer. 5

√
34

34 · 7
8 + 3

√
34

34 ·
√

15
8 = 35

√
34+3

√
510

272

56. tan(α − β)

Answer.
3
5 −

√
15
7

1+ 3
5 ·

√
15
7

=
480−119

√
15

545

Exercise Group. Find the exact of each expression given sin α = 20
29 ,

0 < α < π
2 and cos β = 24

25 , 0 < β < π
2

57. cos(α)
Answer. 21

29

58. tan(α)
Answer. 20

29

59. sin(β)
Answer. 7

25

60. tan(β)
Answer. 7

24

61. sin(α + β)
Answer. 627

725

62. sin(α − β)
Answer. 333

725

63. cos(α + β)
Answer. 364

725

64. cos(α − β)
Answer. 644

725

65. tan(α + β)
Answer. 627

364

66. tan(α − β)
Answer. 333

644

Exercise Group. Find the exact of each expression given tan α = 8
15 ,

π < α < 3π
2 and cos β = − 3

5 , π
2 < β < π

67. sin(α)
Answer. − 8

17

68. cos(α)
Answer. − 15

17

69. sin(β)
Answer. 4

5

70. tan(β)
Answer. − 4

3

71. sin(α + β)
Answer. − 36

85

72. sin(α − β)
Answer. 84

85

73. cos(α + β)
Answer. 77

85

74. cos(α − β)
Answer. 13

85

75. tan(α + β)
Answer. − 36

77

76. tan(α − β)
Answer. 84

13
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Exercise Group. Verify the identity.
77. sin

(
θ + π

2
)

= cos θ 78. sin(θ − π) = − sin θ

79. cos(θ − π) = − cos θ 80. tan(θ − π) = tan θ

81. tan
(

π
4 − θ

)
= 1−tan θ

1+tan θ
82. sin

(
π
2 − θ

)
= sin

(
π
2 + θ

)
83. cos

(
θ + π

3
)

= − sin
(
x − π

6
)

84. cos(x + y) cos(x − y) =
cos2 x − sin2 y

85. sin(x+y)
cos x cos y = tan x + tan y 86. cot(x − y) = cot x cot y+1

cot y−cot x

87. sin(x + y) − sin(x − y) =
2 cos x sin y

88. cos(x + y) + cos(x − y) =
2 cos x cos y

Exercise Group. Write each expression in terms on sine only. Round your
angles to one decimal.

89. −
√

2
2 sin x −

√
2

2 cos x

Answer. sin(x + 225◦)
90. −

√
3

2 sin x − 1
2 cos x

Answer. sin(x + 210◦)

91. 1
2 sin x +

√
3

2 cos x

Answer. sin(x + 60◦)
92. −

√
3

2 sin x − 1
2 cos x

Answer. sin(x + 210◦)
93. 3 sin x + 7 cos x

Answer.
√

58 sin(x + 66.8◦)
94. −5 sin x − 9 cos x

Answer.
√

106 sin(x +
240.9◦)

95. 8 sin x − 2 cos x

Answer.
√

68 sin(x + 346.0◦)
96. −7 sin x + 4 cos x

Answer.
√

65 sin(x + 150.3◦)

97. Use the Subtraction Formula for Cosine to prove the Cofunction Identity
for Sine: sin θ = cos

(
π
2 − θ

)
.
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3.3 Double-Angle and Half-Angle Formulas
Suppose we want to accurately position the Hawaiian Star Compass on the Unit
Circle. In Figure 1.1.4,the house for Manu is located at halfway between Hikina
and ‘Ākau, resulting in an angle of 45◦. By applying right triangle trigonometry,
we can determine the exact coordinates of Manu as (cos(45◦), sin(45◦)) =( √

2
2 ,

√
2

2

)
. However, as we move to the house of ‘Āina, located halfway between

Manu and Hikina, we encounter a problem. The angle for ‘Āina is 22.5◦, which
is not explicitly listed listed in Table 1.5.18. Therefore, we must resort to a
calculator for numerical approximations.

HIKINA

‘Ā
K

A
U

(cos 0◦, sin 0◦) = (1, 0)

(cos 22.5◦, sin 22.5◦) = (?, ?)

(cos 45◦, sin 45◦) =
( √

2
2 ,

√
2

2

)

(cos 90◦, sin 90◦) = (0, 1)

‘Āina, 22.5◦

Man
u,

45
◦

In this section, we will learn about the double and half-angle formulas
for trigonometry. These formulas allow us to determine exact trigonometric
function values for angles that are double or half of known values. This will
enable us to use our existing knowledge of trigonometric functions at 45◦ and
apply the half-angle formulas to obtain exact values at 22.5◦.

3.3.1 Double-Angle Formulas
Recall the addition formula for sine:

sin(α + β) = sin α cos β + cos α sin β (3.3.1)

Consider the case when the two angles are equal. We will call this angle θ,
so let α = θ and β = θ. Then Eq (3.3.1) becomes

sin(θ + θ) = sin θ cos θ + cos θ sin θ

sin(2θ) = 2 sin θ cos θ

Thus we obtain a formula for sine of twice the angle θ.

Definition 3.3.1 Double-Angle Formulas.

sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ

cos 2θ = 1 − 2 sin2 θ

cos 2θ = 2 cos2 θ − 1

tan 2θ = 2 tan θ

1 − tan2 θ
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♢
The proofs for the Double-Angle Formulas for Cosine and Tangent are left

as exercises (Exercise 3.3.4.6-Exercise 3.3.4.9).

Remark 3.3.2 Notice that there are three variations of the double-angle
formula for cosine. All three equations give the correct answer; however, one
version may be more convenient depending on the given information. For
example, if you are given the value of sin θ, it may be easier to select the version
that solely involves sin θ and does not include cos θ.

Example 3.3.3 Given sin θ = − 5
13 and θ lies in Quadrant III, find the exact

value of

(a) sin(2θ)

Solution. By the double-angle formula, we have sin(2θ) = 2 sin θ cos θ.
We are given the value of sin θ, but we do not have cos θ. To find cos θ, we
will draw the triangle formed from sin θ = − 5

13 where θ lies in Quadrant
III.

x

y

-x

-5
13

θ

Using the Pythagorean Theorem, we can solve the triangle:

x2 + (−5)2 = 132

x2 + 25 = 169
x2 = 144
x = 12

Thus we have
cos θ = adjacent

hypotenuse = −12
13

and
tan θ = opposite

adjacent = 5
12 .

With this new information, we can use the double-angle formula to find
sin(2θ):

sin(2θ) = 2 sin θ cos θ = 2
(

− 5
13

) (
−12

13

)
= 120

169

(b) cos(2θ)
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Solution. To compute cos 2θ, notice there are three different formulas:
cos 2θ = cosθ − sin2 θ, cos 2θ = 1 − 2 sin2 θ, or cos 2θ = 2 cos2 θ − 1. Using
any of the three equations will give us the correct answer. However, given
that we know sin θ = − 5

13 , it may be easier to use cos 2θ = 1 − 2 sin2 θ,
since the other two equations require us to know cos θ.
Without having to draw the triangle, we could get

cos 2θ = 1 − 2 sin2 θ

= 1 − 2
(

− 5
13

)2

= 1 − 2
(

25
169

)
= 169

169 − 50
169

= 119
169

(c) tan(2θ)

Solution. Using the double-angle formula for tangent, we get

tan 2θ = 2 tan θ

1 − tan2 θ

=
2

( 5
12

)
1 −

( 5
12

)2

=
10
12

1 − 25
144

=
10
12

119
144

= 10
12 · 144

119
= 120

119

□

Example 3.3.4 Write cos(3θ) in terms of sin θ.
Solution.

sin(3θ) = sin(2θ + θ)
= sin(2θ) cos θ + cos(2θ) sin θ addition formula
= (2 sin θ cos θ) cos θ + (cos2 θ − sin2 θ) sin θ double-angle formula
= 2 sin θ cos2 θ + sin θ cos2 θ − sin3 θ

= 3 sin θ cos2 θ − sin3 θ

= 3 sin θ(1 − sin2 θ) − sin3 θ Pythagorean Identity
= 3 sin θ − 3 sin3 θ − sin3 θ

= 3 sin θ − 4 sin3 θ

□



CHAPTER 3. ANALYTIC TRIGONOMETRY 200

3.3.2 Reducing Powers Formulas
You may notice that the double-angle formula for cosine expresses a trigono-
metric function in terms of the square of another trigonometric function. By
rearranging the terms, we can derive formulas for reducing the powers of sine,
cosine, and tangent expressions with even powers to terms involving only cosine.
These formulas are particularly useful in calculus.

Definition 3.3.5 Formulas for Reducing Powers.

sin2 θ = 1 − cos(2θ)
2

cos2 θ = 1 + cos(2θ)
2

tan2 θ = 1 − cos(2θ)
1 + cos(2θ)

♢

Proof. To prove the first formula, solve for sin2 θ in the double-angle formula:
cos 2θ = 1 − 2 sin2 θ. The second formula is obtained similarly by solving for
cos2 θ in the formula: cos 2θ = 2 cos2 θ − 1. The first two formula can be used
to obtain the third formula:

tan2 θ = sin2 θ

cos2 θ
=

1 − cos(2θ)
2

1 + cos(2θ)
2

= 1 − cos(2θ)
1 + cos(2θ)

■

Example 3.3.6 Write sin4 θ as an expression that does not involve powers of
sine or cosine greater than 1.
Solution. We will use the Reducing Powers Formula twice.

sin4 θ = (sin2 θ)2

=
(

1 − cos(2θ)
2

)2
reducing powers

= 1
4

(
1 − 2 cos(2θ) + cos2(2θ)

)
= 1

4

(
1 − 2 cos(2θ) + 1 + cos(4θ)

2

)
reducing powers

= 1
4

(
1 − 2 cos(2θ) + 1

2 + cos(4θ)
2

)
= 1

4

(
3
2 − 4

2 cos(2θ) + 1
2 cos(4θ)

)
= 1

8 (3 − 4 cos(2θ) + cos(4θ))

□

3.3.3 Half-Angle Formulas
Another set of useful formulas are the half-angle formulas.
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Definition 3.3.7 Half-Angle Formulas.

sin θ

2 = ±
√

1 − cos θ

2 , cos θ

2 = ±
√

1 + cos θ

2 , tan θ

2 = ±
√

1 − cos θ

1 + cos θ

The choice of the + or - sign depends on the Quadrant in which θ/2 lies. ♢

Proof. We take the square root on both sides of the Formulas for Reducing
Powers (Definition 3.3.5) and halve the angle (θ becomes θ

2 and 2θ becomes θ)
to arrive at our formulas. ■

Example 3.3.8 Locating ‘Āina. We are now ready to revisit the problem
posed at the start of this section when we were asked to determine the exact
coordinates of the house ‘Āina on the Unit Circle.
Solution. We know the coordinates are at

(cos 22.5◦, sin 22.5◦).

To find the exact value of cos 22.5◦, we will use the half-angle formula:

cos 22.5◦ = cos
(

45
2

)◦

=
√

1 + cos 45◦

2

=

√
1 +

√
2

2
2

=

√
2
2 +

√
2

2
2

=

√
2 +

√
2

4

= 1
2 ·

√
2 +

√
2

Since the half-angle formula has ±, we check the quadrant. In this case, our
angle is 22.5◦, which is in Quadrant I. Therefore, we choose the positive value.

Finding the exact value of sin 22.5◦ is left for Exercise 3.3.4.1. □

Example 3.3.9 Given sin θ = − 5
13 and θ lies in Quadrant III, find the exact

value of

(a) sin θ
2

Solution. Notice the Half-Angle Formulas all require us to know cos θ.
Since the given information describes the same triangle in Example 3.3.3,
we refer to that problem to get cos θ = − 12

13 .
Next, since θ is in Quadrant III, 180◦ < θ < 270◦, so dividing by 2 gives
us 180◦

2 < θ
2 < 270◦

2 or 90◦ < θ
2 < 135◦. Therefore, we conclude that θ

2
lies in Quadrant II.
To calculate sin θ

2 , we first note that because θ
2 lies in Quadrant II,

sin θ
2 > 0 so we will choose the positive (+) sign in the Half-Angle

Formula:

sin θ

2 =
√

1 − cos θ

2
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=

√
1 −

(
− 12

13
)

2

=

√
1 + 12

13
2

=

√
13
13 + 12

13
2

=

√
25
13
2

=
√

25
26

(b) cos θ
2

Solution. Since θ
2 is in Quadrant II, we know that cos θ

2 < 0 so we will
choose the negative (-) sign in the Half-Angle Formula:

cos θ

2 = −
√

1 + cos θ

2

= −

√
1 +

(
− 12

13
)

2

= −

√
1 − 12

13
2

= −

√
13
13 − 12

13
2

= −

√
1

13
2

= −
√

1
26

(c) tan θ
2

Solution. Since θ
2 is in Quadrant II, we know that tan θ

2 < 0 so we will
choose the negative (-) sign in the Half-Angle Formula:

tan θ

2 = −
√

1 − cos θ

1 + cos θ

= −

√
1 −

(
− 12

13
)

1 +
(
− 12

13
)

= −

√
1 + 12

13
1 − 12

13

= −

√
13
13 + 12

13
13
13 − 12

13

= −

√
25
13
1

13
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= −
√

25
13 · 13

1
= −

√
25

= −5

□
We can derive another formula for tan θ

2 that does not involve ±:

Definition 3.3.10 Half-Angle Formulas for Tangent.

tan θ

2 = ±
√

1 − cos θ

1 + cos θ
= 1 − cos θ

sin θ
= sin θ

1 + cos θ

♢

Proof. We begin by first multiplying both sides of the Sine formula for Reducing
Powers by 2 and halving the angle:

1 − cos θ = 2 sin2
(

θ

2

)
and applying the double-angle formula to:

sin θ = sin 2 · θ

2 = 2 sin θ

2 cos θ

2

Dividing the two preceding results

1 − cos θ

sin θ
=

2 sin2 (
θ
2
)

2 sin θ
2 cos θ

2
=

sin θ
2

cos θ
2

= tan θ

2

Thus
tan θ

2 = 1 − cos θ

sin θ

Similarly, it can be shown that

tan θ

2 = sin θ

1 + cos θ

■

Example 3.3.11 Calculate tan θ
2 from Example 3.3.9 using the above formula.

Solution.

tan θ

2 = 1 − cos θ

sin θ
=

1 −
(
− 12

13
)

− 5
13

=
25
13

− 5
13

= 25
13 ·

(
−13

5

)
= −5

□
Note: We obtained the same result for tan θ

2 as we did in Example 3.3.9. In
this example, we did not have to determine if tan θ

2 was positive or negative,
however, we do need to know the values of both sin θ and cos θ.

3.3.4 Exercises

Exercise Group. The house ‘Āina is located at 22.5◦ = 45◦

2 and the house
Nā Leo is located at 67.5◦ = 135◦

2 . Use the half-angle formulas to evaluate the
exact value of the given expression at each of these houses.
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HIKINA

‘Ā
K

A
U

0◦

11.25◦

22.5◦

33.
75

◦

45
◦

56
.25

◦67
.5

◦

78
.7

5◦90
◦

Lā

‘Āina

Noio
Man

uNā
lan

i

N
ā

Le
oH
ak

a

1. sin(22.5◦)
Answer. 1

2 ·
√

2 −
√

2
2. tan(22.5◦)

Answer.
√

3 − 2
√

2 =√
2 − 1

3. sin(67.5◦)
Answer. 1

2

√
2 +

√
2

4. cos(67.5◦)
Answer. 1

2

√
2 −

√
2

5. tan(67.5◦)
Answer.

√
3 + 2

√
2 =√

2 + 1

6. Use the Addition Formula, cos(α + β) = cos α cos β − sin α sin β, to prove
the double angle formula for cosine:

cos 2θ = cos2 θ − sin2 θ.
7. Use the Pythagorean Identity (sin2 θ + cos2 θ = 1) and the result from

Exercise 3.3.4.6 to prove

cos 2θ = 1 − 2 sin2 θ.
8. Use the Pythagorean Identity (sin2 θ + cos2 θ = 1) and the result from

Exercise 3.3.4.6 to prove

cos 2θ = 2 cos2 θ − 1.
9. Use the addition formula, tan(α + β) = tan α+tan β

1−tan α tan β , to prove the double
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angle formula for tangent:

tan 2θ = 2 tan θ

1 − tan2 θ
.

Exercise Group. Use the figure below to find the exact values for each of
the following exercises.

12

13 5

θ

10. sin(θ)
Answer. 5

13

11. cos(θ)
Answer. 12

13

12. tan(θ)
Answer. 5

12

13. sin(2θ)
Answer. 120

169

14. cos(2θ)
Answer. 119

169

15. tan(2θ)
Answer. 120

119

16. sin
(

θ
2
)

Answer.
√

1
26

17. cos
(

θ
2
)

Answer.
√

25
26

18. tan
(

θ
2
)

Answer. 1
5

Exercise Group. Use the figure below to find the exact values for each of
the following exercises.

3

5 4

θ

19. sin(θ)
Answer. 4

5

20. cos(θ)
Answer. 3

5

21. tan(θ)
Answer. 4

3

22. sin(2θ)
Answer. 24

25

23. cos(2θ)
Answer. − 7

25

24. tan(2θ)
Answer. − 24

7

25. sin
(

θ
2
)

Answer.
√

1
5

26. cos
(

θ
2
)

Answer.
√

4
5
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27. tan
(

θ
2
)

Answer. 1
2

Exercise Group. Find the exact value of each expression given cos θ = − 3
5

and θ is in Quadrant III.
28. sin(θ)

Answer. − 4
5

29. tan(θ)
Answer. 4

3

30. sin(2θ)
Answer. 24

25

31. cos(2θ)
Answer. − 7

25

32. tan(2θ)
Answer. − 24

7

33. sin
(

θ
2
)

Answer.
√

4
5

34. cos
(

θ
2
)

Answer. −
√

1
5

35. tan
(

θ
2
)

Answer. −2

Exercise Group. Find the exact value of each expression given sin θ = − 8
17

and 270◦ < θ < 360◦.
36. cos(θ)

Answer. 15
17

37. tan(θ)
Answer. − 8

15

38. sin(2θ)
Answer. − 240

289

39. cos(2θ)
Answer. 161

289

40. tan(2θ)
Answer. − 240

161

41. sin
(

θ
2
)

Answer.
√

1
17

42. cos
(

θ
2
)

Answer.
√

16
17

43. tan
(

θ
2
)

Answer. − 1
4

Exercise Group. Find the exact value of each expression given cos θ = 2
3

and 3π
2 < θ < 2π.

44. sin(θ)
Answer. −

√
5

3

45. tan(θ)
Answer.

√
5

2

46. sin(2θ)
Answer. − 4

√
5

9

47. cos(2θ)
Answer. − 1

9

48. tan(2θ)
Answer. −4

√
5

49. sin θ
2

Answer.
√

1
6

50. cos θ
2

Answer. −
√

5
6

51. tan θ
2

Answer. −
√

1
5

Exercise Group. Use the Half-Angle Formula to find the exact value of each
of the following

52. tan 157.5◦

Answer. 1 −
√

2
53. sin 75◦

Answer.
√

2+
√

3
4
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54. tan 112.5◦

Answer. −1 −
√

2
55. cos 15◦

Answer.
√

2+
√

3
2

56. cos π
8

Answer. cos π
8 =

√ √
2+2
4

57. tan 11π
12

Answer. tan 11π
12 = −

√
2 + 1

58. sin 7π
12

Answer. sin 7π
12 =

√
2−1
2

59. cos 3π
8

Answer. cos 3π
8 =

√ √
2+2
4

Exercise Group. Write each of the following as expressions that do not
involve powers of sine or cosine greater than 1.

60. cos4 θ

Answer. 3
8 + 1

2 cos(2θ) +
1
8 cos(4θ)

61. sin3(2θ)
Answer. 1

2 sin(2θ) ·
(1 − cos(4θ))

62. sin2 θ cos4 θ

Answer. 1
16 (1 + cos(2θ) −

cos(4θ) − cos(2θ) cos(4θ))

63. sin4 θ cos2 θ

Answer. 1
16 (1 − cos(2θ) −

cos(4θ) + cos(2θ) cos(4θ))

64. Write sin2 θ cos2 θ expressions that does not involve powers of sine or cosine
greater than 1.

(a) Using the Reducing Powers Formula (Definition 3.3.5)

Answer. 1
8 (1 − cos(4θ))

(b) Using the Double Angle Formula (Definition 3.3.1) where sin θ cos θ =
1
2 sin 2θ

Answer. 1
8 (1 − cos(4θ))

65. Find the exact value of sin2(15◦)

(a) Evaluate using the Reducing Powers Formula (Definition 3.3.5)

Answer. 2−
√

3
4

(b) Evaluate using the Half-Angle Formula (Definition 3.3.7)

Answer. 2−
√

3
4

Exercise Group. Use half angle to find the exact deviation for the indicated
angle, θ.

66. 2 Houses (θ = 22.5◦)

120 NM

reference course

deviation

2 Houses=22.5◦

Answer. 60
√

2 −
√

2
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67. 6 Houses (θ = 67.5◦)

12
0

N
M

reference course

deviation

6 Houses=67.5◦

Answer. 60
√

2 +
√

2

Exercise Group. Verify the identity
68. (sin θ + cos θ)2 = 1 + sin(2θ) 69. cos(2θ) = cot θ−tan θ

cot θ+tan θ

70. (sin2 θ − 1)2 = cos(2θ) + sin4 θ 71. cos2(3θ) − sin2(3θ) = cos(6θ)
72. cos4 θ − sin4 θ = cos(2θ) 73. sin(6θ) = 2 sin(3θ) cos(3θ)

74. cot(2θ) = 1−tan2 θ
2 tan θ

75. csc2 (
θ
2
)

= 2
1−cos θ

76. sec2 (
θ
2
)

= 2
1+cos θ 77. 2 tan θ

1+tan2 θ = sin(2θ)
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3.4 Product-to-Sum and Sum-to-Product Formu-
las

In this section, we will learn how to convert sums of trigonometric functions to
products of trigonometric functions, and vice versa. These techniques provide
us with tools to simplify expressions and solve equations.

3.4.1 Product to Sum Formulas
Definition 3.4.1 Product to Sum Formulas.

sin α cos β = 1
2[sin(α + β) + sin(α − β)]

cos α sin β = 1
2[sin(α + β) − sin(α − β)]

cos α cos β = 1
2[cos(α + β) + cos(α − β)]

sin α sin β = 1
2[cos(α − β) − cos(α + β)]

♢

Proof. We add the addition and subtraction formulas for cosine:

cos(α + β) = cos α cos β − sin α sin β

+ cos(α − β) = cos α cos β + sin α sin β

cos(α + β) + cos(α − β) = 2 cos α cos β

Dividing both sides by 2, we get

1
2 [cos(α + β) + cos(α − β)] = cos α cos β

Next, we add the addition and subtraction formulas for sine:

sin(α + β) = sin α cos β + cos α sin β

+ sin(α − β) = sin α cos β − cos α sin β

sin(α + β) + sin(α − β) = 2 sin α cos β

Dividing both sides by 2, we get

1
2 [sin(α + β) + sin(α − β)] = sin α cos β

Next, we subtract the addition and subtraction formulas for sine:

sin(α + β) = sin α cos β + cos α sin β

− sin(α − β) = sin α cos β − cos α sin β

sin(α + β) − sin(α − β) = 2 sin β cos α

Dividing both sides by 2, we get

1
2 [sin(α + β) − sin(α − β)] = sin β cos α
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Finally, we subtract the addition and subtraction formulas for cosine:

cos(α − β) = cos α cos β + sin α sin β

− cos(α + β) = cos α cos β − sin α sin β

cos(α − β) − cos(α + β) = 2 sin α sin β

Dividing both sides by 2, we get

1
2 [cos(α − β) − cos(α + β)] = sin α sin β

■

Example 3.4.2 Express the product of cos(2x) cos(5x) as a sum or difference
of sine and cosine with no products.
Solution. Using the formula we get

cos(2x) cos(5x) = 1
2 [cos(2x + 5x) + cos(2x − 5x)]

= 1
2 [cos(7x) + cos(−3x)]

This satisfies the requirement of expressing the product of cos(2x) cos(5x)
as a sum or difference of sine and cosine with no products. However, we can
simplify it further.

Since cosine is an even function, cos(−3x) = cos(3x). Thus, we can simplify
the expression to:

cos(2x) cos(5x) = 1
2 [cos(7x) + cos(3x)]

□

Example 3.4.3 Express the product of sin(6θ) cos(4θ) as a sum or difference
of sine and cosine with no products.
Solution. Using the formula we get

sin(6θ) cos(4θ) = 1
2 [sin(6θ + 4θ) + sin(6θ − 4θ)]

= 1
2 [sin(10θ) + cos(2θ)]

□

Remark 3.4.4 Negative Angles. In the previous example, both forms
cos(2x) cos(5x) = 1

2 [cos(7x) + cos(−3x)] and cos(2x) cos(5x) = 1
2 [cos(7x) +

cos(3x)] are valid representations of the answer. However, it is more common
to write the first form (where the angles are positive) because it simplifies the
expression and aligns with standard conventions for representing trigonometric
identities. Positive angles are often preferred for clarity and consistency in
mathematical notation. Negative angles can be transformed into positive angles
using the even-odd properties of trigonometric functions (Definition 1.5.22).
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3.4.2 Sum to Product Formulas
Definition 3.4.5 Sum-to-Product Formula.

sin α + sin β = 2 sin
(

α + β

2

)
cos

(
α − β

2

)
sin α − sin β = 2 cos

(
α + β

2

)
sin

(
α − β

2

)
cos α + cos β = 2 cos

(
α + β

2

)
cos

(
α − β

2

)
cos α − cos β = −2 sin

(
α + β

2

)
sin

(
α − β

2

)
♢

Proof. We first let α = u+v
2 and β = u−v

2 . Then

α + β = u + v

2 + u − v

2 = 2u

2 = u

and
α − β = u + v

2 − u − v

2 = 2v

2 = v

Substituting these values for α, β, α + β, and α − β into the Product-to-Sum
Formulas, we get

sin
(

u + v

2

)
cos

(
u − v

2

)
= 1

2[sin(u) + sin(v)]

cos
(

u + v

2

)
sin

(
u − v

2

)
= 1

2[sin(u) − sin(v)]

cos
(

u + v

2

)
cos

(
u − v

2

)
= 1

2[cos(u) + cos(v)]

sin
(

u + v

2

)
sin

(
u − v

2

)
= 1

2[cos(v) − cos(u)]

Multiplying both sides by 2 and substituting u with α and v with β, we arrive
at the Sum-to-Product Formula, where we negate the last equation. ■

Example 3.4.6 Express the sum sin(8x) + sin(2x) as a product of sines or
cosines.
Solution. Using the formula we get

sin(8x) + sin(2x) = 2 sin
(

8x + 2x

2

)
cos

(
8x − 2x

2

)
= 2 sin

(
10x

2

)
cos

(
6x

2

)
= 2 sin (5x) cos (3x)

□

Example 3.4.7 Express the difference cos(3t) − cos(5t) as a product of sines
or cosines.
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Solution. Using the formula we get

cos(3t) − cos(5t) = −2 sin
(

3t + 5t

2

)
sin

(
3t − 5t

2

)
= −2 sin

(
8t

2

)
sin

(
−2t

2

)
= −2 sin (4t) sin (−t)
= 2 sin (4t) sin (t)

□

3.4.3 Exercises

Exercise Group. Express each product as a sum or difference of sine and
cosine.

1. sin(3x) cos(5x)
Answer. 1

2 [sin(8x) +
sin(−2x)] =
1
2 [sin(8x) − sin(2x)]

2. sin(7t) cos(−2t)
Answer. 1

2 [sin(5t) + sin(9t)]

3. cos(−3t) sin(7t)
Answer. 1

2 [sin(4t) −
sin(−10t)] =
1
2 [sin(4t) + sin(10t)]

4. cos(9θ) sin(6θ)
Answer. 1

2 [cos(15θ) −
cos(3θ)]

5. cos(−4x) cos(6x)
Answer. 1

2 [cos(2x) +
cos(−10x)] =
1
2 [cos(2x) + cos(10x)]

6. cos(2θ) cos(4θ)
Answer. 1

2 [cos(6θ) +
cos(−2θ)] =
1
2 [cos(6θ) + cos(2θ)]

7. sin(−θ) sin(8θ)
Answer. 1

2 [cos(−9θ) −
cos(7θ)] = 1

2 [cos(9θ) − cos(7θ)]

8. sin(6t) sin(−3t)
Answer. 1

2 [cos(9t) − cos(3t)]

Exercise Group. Express each sum or difference as a product.
9. sin(−2θ) + sin(−9θ)

Answer. 2 sin
(
− 11θ

2
)

cos
( 7θ

2
)

=
−2 sin

( 11θ
2

)
cos

( 7θ
2

)
10. sin(5x) + sin(7x)

Answer. 2 sin (6x) cos (−x) =
2 sin (6x) cos (x)

11. sin(4θ) − sin(−7θ)
Answer. 2 cos

( 11θ
2

)
sin

(
− 3θ

2
)

=
−2 cos

( 11θ
2

)
sin

( 3θ
2

)
12. sin(3x) − sin(−4x)

Answer. 2 cos
( 7x

2
)

sin
(
− x

2
)

=
−2 cos

( 7x
2

)
sin

(
x
2
)

13. cos(8θ) + cos(−5θ)
Answer. 2 cos

( 3θ
2

)
cos

( 13θ
2

) 14. cos(9t) + cos(2t)
Answer. 2 cos

( 11t
2

)
cos

( 7t
2

)
15. cos(6θ) − cos(8θ)

Answer. −2 sin (7θ) sin (−θ) =
2 sin (7θ) sin (θ)

16. cos(6t) − cos(−3t)
Answer. −2 sin

( 9t
2

)
sin

( 3t
2

)

Exercise Group. Find the exact value of each expression.
17. sin(195◦) cos(105◦)

Answer. 1
2

(
−

√
3

2 + 1
) 18. cos(225◦) cos(195◦)

Answer.
√

3
4 − 1

4
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19. sin(195◦) − sin(75◦)
Answer. −

√
6

2

20. cos(165◦) − cos(105◦)
Answer. −

√
2

2

21. sin(285◦) + sin(195◦)
Answer. −

√
6

2

22. cos(255◦) + cos(15◦)
Answer.

√
2

2

Exercise Group. Verify the identity
23. sin θ + sin(3θ) = 4 sin θ cos2 θ

24. cos(3θ) + cos θ = 2
(
cos3 θ − sin2 θ cos θ

)
25. 6 cos(5θ) sin(6θ) = 3 sin(11θ) + 3 sin(θ)

26. sin θ+sin(3θ)
2 sin(2θ) = cos θ

27. cos θ+cos(3θ)
2 cos(2θ) = cos θ

28. cos θ−cos(3θ)
sin θ+sin(3θ) = tan θ
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3.5 Basic Trigonometric Equations
Trigonometric equations are equations involving trigonometric functions
such as sine, cosine, and tangent. These equations seek to find specific values,
known as solutions, that satisfy the equation.

Trigonometric functions are inherently periodic, meaning they repeat their
values at regular intervals. As a result, trigonometric equations may have
multiple solutions due to this periodic nature. In fact, some equations may
have infinitely many solutions.

To address all possible solutions, we use a technique known as a general
solution. This method involves initially identifying solutions within a single
period of the trigonometric function. We then extend these solutions by adding
integer multiples of the period of the trigonometric function.

In this section, we will explore various techniques for effectively solving
trigonometric equations, including methods for finding general solutions.

3.5.1 Solving Equations with a Single Trigonometric Func-
tion

Example 3.5.1 Solve the equation

sin θ = 1
2 .

Solution. To solve the equation sin θ = 1
2 , our initial instinct might lead us

to take the inverse sine of both sides:

sin−1 (sin θ) = sin−1
(

1
2

)
resulting in

θ = π

6 .

While this is a valid solution, it’s important to recognize that there are additional
solutions to consider.

Since the sine function is positive in both Quadrant I and Quadrant II, we
can find another solution in Quadrant II by using the reference angle π

6 and
the methods described in Subsection 1.5.2. Therefore, the equivalent angle in
Quadrant II is θ = π − π

6 = 5π
6 .

x

y

5π
6

π
6

However, these two angles, θ = π
6 or θ = 5π

6 , are not the only solutions.
Recall that the sine function has a period of 2π, meaning that adding or
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subtracting any integer multiples of 2π to these angles will also give you
solutions. For example, θ = π

6 + 4π and θ = 5π
6 − 10π are both solutions.

−2π −π π 2π 3π

−1

−0.5

0.5

1

x

y

Thus, the general solution to sin θ = 1
2 can be expressed as:

θ = π

6 + 2kπ or θ = 5π

6 + 2kπ,

where k is any integer. □

Example 3.5.2 Solve the equation 2 cos θ +
√

2 = 0, list six solutions.
Solution. First we will isolate cos θ.

2 cos θ +
√

2 = 0
2 cos θ = −

√
2

cos θ = −
√

2
2 .

Thus we have the general solution θ = 3π
4 + 2kπ or θ = 5π

4 + 2kπ for any
integer k.

To get specific solutions, we select specific values of k:

k = −1 :θ = 3π

4 + 2(−1)π = −5π

4 , θ = 5π

4 + 2(−1)π = −3π

4
k = 0 :θ = 3π

4 + 2(0)π = 3π

4 , θ = 5π

4 + 2(0)π = 5π

4
k = 1 :θ = 3π

4 + 2(1)π = 11π

4 , θ = 5π

4 + 2(1)π = 13π

4

□
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3.5.2 Solving Trigonometric Equations with Square Terms

Example 3.5.3 Solve cos2 θ = 1
2 where 0 ≤ θ < 2π on the interval 0 ≤ θ < 2π.

Solution. We will first solve for cos θ. We begin by taking the square root of
both sides of the equation and simplify:

√
cos2 θ = ±

√
1
2

cos θ ± 1√
2

= ±
√

2
2

From Table 1.5.18, when cos θ =
√

2
2 , we have θ = π

4 or θ = 7π
4 ; and when

cos θ = −
√

2
2 , we have θ = 3π

4 or θ = 5π
4 .

Thus, our solutions are:

θ = π

4 ,
3π

4 ,
5π

4 ,
7π

4 .

□

3.5.3 Solving Trigonometric Equations by Factoring
Example 3.5.4 Solve cos2 x − 4 cos x + 3 = 0.
Solution. To solve this equation, let’s make a substitution to simplify it.
We’ll let y = cos x, so the equation becomes y2 − 4y + 3 = 0.

Factoring the quadratic equation, we obtain (y − 3)(y − 1) = 0. Setting each
factor equal to zero, we find two potential solutions: y = 3 or y = 1. We are
not done because we need to solve for x and not y.

Substituting back cos x for y, we find that cos x = 3 is not a valid solution,
as the range of cosine is limited to [-1, 1]. However, cos x = 1 yields a solution
of x = 0 for one period.

Therefore, the general solution to the equation is:

x = 0 + 2kπ = 2kπ,

where k is any integer. □

Example 3.5.5 Solve 2 cos θ sin θ +
√

3 cos θ = 0.
Solution. We begin by factoring cos θ:

2 cos θ sin θ +
√

3 cos θ = 0
cos θ(2 sin θ +

√
3) = 0

Thus we get two equations: cos θ = 0 and 2 sin θ +
√

3 = 0.
From cos θ = 0 we get θ = π

2 or θ = 3π
2 .

From the second equation, we isolate sin θ:

2 sin θ +
√

3 = 0
2 sin θ = −

√
3

sin θ = −
√

3
2

Thus we get θ = 4π
3 or θ = 5π

3 .
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We get the general solutions by adding integer multiples of 2π to get

θ = π

2 + 2kπ, θ = 3π

2 + 2kπ, θ = 4π

3 + 2kπ, θ = 5π

3 + 2kπ

where k is any integer. □

3.5.4 Solving a Trigonometric Equation with a Calculator
Example 3.5.6 Use a calculator to solve 3 tan θ = 2 on the interval 0 ≤ θ < 2π.
Express your answer in radians, rounded to two decimals.
Solution. We begin by isolating tan θ :

tan θ = 2
3

Next, we take the inverse tangent and use a calculator to obtain

θ = tan−1
(

2
3

)
≈ 0.588002603548

Rounding to two decimals, we get θ = 0.59 radians, which is in Quadrant I
since 0 < 0.59 < π

2 . Another Quadrant where tan θ = 2
3 is in Quadrant III.

Using the methods in Subsection 1.5.2 we get the other angle: θ = 0.59 + π. □

3.5.5 Exercises

Exercise Group. Solve each equation on the interval 0 ≤ θ < 2π

1. sin θ =
√

3
2

Answer. π
3 , 2π

3

2. tan θ = −1
Answer. 3π

4 , 7π
4

3. cot θ = −
√

3
Answer. 5π

6 , 11π
6

4. csc θ = 2
Answer. π

6 , 5π
6

5. sec θ = −2
Answer. 2π

3 , 4π
3

6. cos θ =
√

2
2

Answer. π
4 , 7π

4

7. csc θ +
√

2 = 0
Answer. 5π

4 , 7π
4

8. 6 cos θ + 1 = −2
Answer. 2π

3 , 4π
3

9. 2 tan θ + 2
√

3 = 0
Answer. 2π

3 , 5π
3

10. 2 cot θ + 8 = 6
Answer. 3π

4 , 7π
4

11. 2 sin θ + 1 = 0
Answer. 7π

6 , 11π
6

12. sec θ −
√

2 = 0
Answer. π

4 , 7π
4

Exercise Group. Solve each equation, giving the general formula for each
solution. List six specific solutions.

13. sin θ = −
√

2
2

Answer. 5π
4 + 2kπ,

7π
4 + 2kπ; − 3π

4 , − π
4 , 5π

4 , 7π
4 ,

13π
4 , 15π

4

14. cos θ = 1
2

Answer. π
3 + 2kπ, 5π

3 + 2kπ;
− 5π

3 , − π
3 , π

3 , 5π
3 , 7π

3 , 11π
3

15. tan θ = −1
Answer. π

4 + kπ; − 3π
4 , π

4 ,
5π
4 , 9π

4 , 13π
4 , 17π

4

16. cot θ = −
√

3
Answer. 5π

6 + kπ, 11π
6 + kπ;

− π
6 , 5π

6 , 11π
6 , 17π

6 , 23π
6 , 29π

6
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Exercise Group. Solve each equation on the interval 0 ≤ θ < 2π. Express
your answer in radians, rounded to two decimals.

17. sin θ = −0.82
Answer. 4.10, 5.32

18. cos θ = 0.3
Answer. 1.27, 5.02

19. tan θ = 2.5
Answer. 1.19, 4.33

20. cot θ = −5
Answer. 2.94, 6.09

Exercise Group. Solve each equation on the interval 0 ≤ θ < 2π.
21. 4 cos2 θ − 3 = 0

Answer. π
6 , 5π

6 , 7π
6 , 11π

6

22. 3 csc2 θ − 4 = 0
Answer. π

3 , 2π
3 , 4π

3 , 5π
3

23. 4 tan2 θ − 1 = 0
Answer. π

4 , 3π
4 , 5π

4 , 7π
4

24. 2 cot2 θ − 6 = 0
Answer. π

6 , 5π
6 , 7π

6 , 11π
6

25. sec2 θ − 4 = 0
Answer. π

3 , 2π
3 , 4π

3 , 5π
3

26. 2 cos2 θ − 1 = 0
Answer. π

4 , 3π
4 , 5π

4 , 7π
4

27. (2 cos θ − 1)(csc θ + 2) = 0
Answer. π

3 , 7π
6 , 5π

3 , 11π
6

28. (tan θ −
√

3)(cot θ + 1) = 0
Answer. π

3 , 3π
4 , 4π

3 , 7π
4

29. 4 sin2 θ − 2 sin θ = 0
Answer. 0, π

6 , 5π
6 , π

30. 2 cos2 θ −
√

3 cos θ = 0
Answer. π

6 , π
2 , 3π

2 , 11π
6

31. sin3 θ − sin θ = 0
Solution. 0, π

2 , π, 3π
2

32. 2 cos2 θ + cos θ − 1 = 0
Answer. π

3 , π, 5π
3

33. 2 sin2 θ − 7 sin θ + 3 = 0
Answer. π

6 , 5π
6

34. 3 tan3 θ − tan θ = 0
Answer. 0, π

6 , 5π
6 , π, 7π

6 , 11π
6

35. cos2 θ + 2 cos θ + 1 = 0
Answer. π

36. csc5 θ − 4 csc θ = 0
Answer. π

4 , 3π
4 , 5π

4 , 7π
4

37. 2 sin2 θ − 3 sin θ − 2 = 0
Answer. 7π

6 , 11π
6

38. 2 cos2 θ − 3 cos θ + 1 = 0
Answer. 0, π

3 , 5π
3
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3.6 Trigonometric Equations - Advanced Tech-
niques

In this section, we will solve trigonometric equations using various trigonometric
identities, equations involving multiple angles, and graphical methods.

3.6.1 Solving a Trigonometric Equation by Using Funda-
mental Identities

Example 3.6.1 Solve 2 sin2 x + 3 cos x − 3 = 0.
Solution. To solve the equation 2 sin2 x + 3 cos x − 3 = 0, we want to first
write it in terms of only cosine or only sine. By the Pythagorean Identity, we
substitute sin2 x = 1 − cos2 x, resulting in:

2 sin2 x + 3 cos x − 3 = 0
2(1 − cos2 x) + 3 cos x − 3 = 0

2 − 2 cos2 x + 3 cos x − 3 = 0
−2 cos2 x + 3 cos x − 1 = 0

2 cos2 x − 3 cos x + 1 = 0
(2 cos x − 1)(cos x − 1) = 0

Thus cos x = 1
2 or cos x = 1.

Solving for x in the first equation gives x = π
3 or 5π

3 , while the second
equations gives x = 0 for one period. Finding all solutions, we arrive at
x = π

3 + 2kπ, 5π
3 + 2kπ, or x = 0 + 2kπ = 2kπ for any integer k. □

Remark 3.6.2 If you are having trouble factoring trigonometric functions,
try substituting a simpler term and then factor. For example, consider the
expression 2 cos2 x − 3 cos x + 1 in the previous example. If factoring this
expression directly is not clear, you can use the substitution A = cos x. This
transforms the expression into 2A2 − 3A + 1, which may be easier to factorize.
Once factored, you can substitute cos x back in for A to obtain the final solution.

Example 3.6.3 Solve the equation sin(2θ) + cos θ = 0 on the interval 0 ≤ θ <
2π.
Solution. Notice the first term has 2θ so we will begin by using the double-
angle formula:

sin(2θ) + cos θ = 0
2 sin θ cos θ + cos θ = 0

Then we factor our cosθ from all the terms:

cos θ(2 sin θ + 1) = 0.

Thus we get
cos θ = 0 or 2 sin θ + 1 = 0.

When cos θ = 0 we get θ = π
2 , 3π

2 .
When 2 sin θ + 1 = 0, it is equivalent to when sin θ = − 1

2 , thus we get
θ = 7π

6 , 11π
6 .

Combining these, our solutions are

θ = π

2 ,
3π

2 ,
7π

6 ,
11π

6 .
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□

3.6.2 Solving a Trigonometric Equation with Multiples of
an Angle

Example 3.6.4 Solve the equation 2 cos(2θ) −
√

3 = 0 on the interval 0 ≤ θ <
2π.
Solution. First we will isolate cos(2θ). We begin by rearranging the equation:

2 cos(2θ) −
√

3 = 0
2 cos(2θ) =

√
3

cos(2θ) =
√

3
2

Since cos(2θ) equals
√

3
2 for angles π

6 and 11π
6 , the general solutions for 2θ

are
2θ = π

6 + 2kπ or 2θ = 11π

6 + 2kπ

for some integer k.
Note that we have only solved for 2θ. Dividing both sides by 2 to find θ, we

obtain:
θ = π

12 + kπ or θ = 11π

12 + kπ.

Our restriction 0 ≤ θ < 2π gives us the following solutions:

π

12 ,
11π

12 ,
13π

12 ,
23π

12 .

□

Remark 3.6.5 In this example, our angle was a double-angle: 2θ. When dealing
with multiple-angle trigonometric functions, such as cos(2θ), it’s essential to
understand their graphical behavior. According to Definition 2.1.29, the graph
of cos(2θ) undergoes a horizontal compression by a factor of 2, and its period
is now 2π

2 = π. Since we are asked to find solutions on the interval 0 ≤ θ < 2π,
we will need to consider two periods. Thus, we have four solutions (2 solutions
for each period):

π

12 ,
11π

12 ,
13π

12 ,
23π

12 .

In general, if our trigonometric function has an angle kθ, for some number
k, we will need to consider the effect of this multiple angle on the period and
number of solutions, ensuring that we adjust our solutions accordingly to cover
all possible solutions within the given interval.

Example 3.6.6 Solve the equation 3 tan θ
2 −

√
3 = 0 on the interval 0 ≤ θ < 2π.

Solution. We begin by isolating tan θ
2 :

3 tan θ

2 −
√

3 = 0

3 tan θ

2 =
√

3

tan θ

2 =
√

3
3
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Since tan θ
2 equals

√
3

3 for angles π
6 and 7π

6 , the general solutions for θ
2 are

θ

2 = π

6 + kπ and θ

2 = 7π

6 + kπ

for some integer k.
Solving for θ, we multiply both sides by 2 to obtain:

θ = π

3 + 2kπ and θ = 7π

3 + 2kπ.

Considering our restriction 0 ≤ θ < 2π, we only have one solution:

θ = π

3 .

□

Remark 3.6.7 In this example, our angle was θ
2 , which stretches the graph

of the tangent function. When we have an angle of the form θ
2 , it effectively

stretches the period of the tangent function by a factor of 2. Thus, for the given
interval, we only have half a period to consider instead of the full period.

3.6.3 Solving a Trigonometric Equation with a Graphing
Utility

Sometimes we will encounters equations where an exact solution is not possible.
However, we may be able to get an approximation to the solution by graphing
the equation.

Example 3.6.8 Use a graphing utility to find the solutions to the equation
sin x + cos x = 1

2 x. Express your answers in radians, rounded to two decimals.
Solution. To find the solution to sin x + cos x = 1

2 x, we graph the left-hand
side and the right-hand side of the equation and identify their intersections.
Let y1 represent the curve for the left-hand side and y2 represent the curve for
the right-hand side:

y1 = sin x + cos x, y2 = 1
2x.

Use a graphing utility to plot y1 and y2.

Figure 3.6.9 Plotting y1 = sin x + cos x and y2 = 1
2 x, corresponding to the

left-hand and right-hand sides of the equation, respectively.
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Next, you may need to zoom in or out to better visualize the behavior of
the curves. To find their intersection points, calculators often have a TRACE
or INTERSECT button or command. In Desmos Graphing Calculator1 you can
click on either curve, and the points of intersection will be highlighted. Hovering
your cursor over the intersection will display the coordinates of that point.

The equation sin x + cos x = 1
2 x has three solutions, which correspond to

the points of intersection between the curves y1 = sin x + cos x and y2 = 1
2 x.

The x-values of these intersections are:

x = −2.68, −1.24, 1.71.

□

3.6.4 Exercises

Exercise Group. Solve each equation on the interval 0 ≤ θ < 2π.
1. sin2 θ − cos2 θ = 0

Answer. π
4 , 3π

4 , 5π
4 , 7π

4

2. cos2 θ − sin2 θ = 1 + sin θ

Answer. 0, π, 7π
6 , 11π

6

3. 3 cot2 θ − 4 csc θ = 1
Answer. π

6 , 5π
6

4. sin2 θ = 5 cos θ + 5
Answer. π

5. cos2 θ = 3 − 3 sin θ

Answer. π
2

6. 2 sin2 θ = 3 cos θ + 3
Answer. 2π

3 , π, 4π
3

Trigonometric Equations Involving Multiples of an Angle. Solve the
given trigonometric equation on the interval 0 ≤ θ < 2π.

7. cot 2θ = −
√

3
Answer. 5π

12 , 11π
12 , 17π

12 , 23π
12

8. sin 4θ =
√

3
2

Answer. π
12 , π

6 , 7π
12 , 2π

3 , 13π
12 , 7π

6 , 19π
12 , 5π

3

9.
√

2 cos 2θ = 1
Answer. π

8 , 7π
8 , 9π

8 , 15π
8

10. csc 3θ = 2
Answer. π

18 , 5π
18 , 13π

18 , 17π
18 , 25π

18 , 29π
18 ,

11. sec 3θ
2 = −

√
2

Answer. π
2 , 5π

6 , 11π
6

12. cos θ
2 − 1 = 0

Answer. 0

Trigonometric Equations Involving Addition or Subtraction Formula.
Use the Addition and Subtraction Formulas to solve each equation on the
interval 0 ≤ θ < 2π.

13. sin θ cos 2θ + cos θ sin 2θ =
√

3
2

Answer. π
9 , 2π

9 , 7π
9 , 8π

9 , 13π
9 , 14π

9 ,

14. sin 3θ cos 2θ − cos 3θ sin 2θ = − 1
2

Answer. 7π
6 , 11π

6

15. cos 3θ cos θ + sin 3θ sin θ = −
√

2
2

Answer. 3π
8 , 5π

8 , 11π
8 , 13π

8

16. cos θ cos 3θ − sin θ sin 3θ = 1
Answer. 0, π

2 , π, 3π
2

1DesmosGraphingCalculator

https://www.desmos.com/calculator


CHAPTER 3. ANALYTIC TRIGONOMETRY 223

Trigonometric Equations Involving Double-Angle or Half-Angle For-
mula. Use the Double-Angle and Half-Angle Formulas to solve each equation
on the interval 0 ≤ θ < 2π.

17. sin 2θ = cos θ

Answer. π
6 , π

2 , 5π
6 , 3π

2

18. cos 2θ = cos θ

Answer. 0, 2π
3 , 4π

3
19. cos 2θ + cos θ − 2 = 0

Answer. 0
20. tan 2θ = −2 sin θ

Answer. 0, π
3 , π, 5π

3

21. cos 2θ + 2 = 2 sin2 θ

Answer. π
3 , 2π

3 , 4π
3 , 5π

3

22. tan θ
2 = sin θ

Answer. 0, π
2 , 3π

2

Trigonometric Equations Involving Sum-to-Product Formula. Use the
Sum-to-Product Formulas to solve each equation on the interval 0 ≤ θ < 2π.

23. sin 3θ + sin θ = 0
Answer. 0, π

2 , π, 3π
2

24. sin 6θ − sin 2θ = cos 4θ

Answer. π
12 , π

8 , 3π
8 , 5π

12 , 5π
8 , 7π

8 , 13π
12 , 9π

8 , 11π
8 , 17π

12 , 13π
8 , 15π

8
25. cos 4θ − cos 2θ = 0

Solution. 0, π
3 , 2π

3 , π, 4π
3 , 5π

3

26. cos 3θ + cos θ = 0
Solution. π

4 , π
2 , 3π

4 , 5π
4 , 3π

2 , 7π
4

Exercise Group. Use a graphing utility to solve each equation. Express
your solutions in radians, rounded to two decimals.

27. sin(2x) = 4 cos x + x

Answer. x =
−1.34, 2.63, 3.90

28. sin x − x = cos x

Answer. x = −1.26

29. x2 = cos x

Answer. x = −0.82, 0.82
30. x3 + 2x2 = cos(2x)

Answer. x =
−2.11, −0.56, 0.48
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reciprocal identities, 47
reducing powers formulas, 200
reference angle, 67
reference course, 47
reflection

about x-axis, 95
about y-axis, 96

roll, 155

second, 13
sine

domain, 90
range, 90

sinus curves, 93
sinusoidal graphs, 93
solar declination, 30, 88
solstice

summer, 89
winter, 88

speed
angular, 23

linear, 23
standard position, 14
Star Compass

Cook Island, 9
Hawaiian, 4
Māori, 9
paafu, 1
Sāmoan, 9

stick chart, 7
sum-to-product formula, 211
sums of sines and cosines, 190
swash, 62

terminal side, 12
triangles

solving, 52
trigonometric equations, 214
trigonometric functions, 34

circle of radius r, 43
of angles, 35
of real numbers, 34
ratios, 47
special, 49
special values, 40

unit circle, 33

vertical asymptote, 115
vertical compression, 97
vertical shift, 94
vertical stretch, 97

wave height, 110
wave period, 110
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