Definition 3.1.1.
The fundamental trigonometric identities are
- Reciprocal Identities (Definition 1.4.2)\begin{align*} \sin\theta\amp =\dfrac{1}{\csc\theta} \amp \cos\theta\amp =\dfrac{1}{\sec\theta} \amp \tan\theta\amp =\dfrac{1}{\cot\theta}\\ \csc\theta\amp =\dfrac{1}{\sin\theta} \amp \sec\theta\amp =\dfrac{1}{\cos\theta} \amp \cot\theta\amp =\dfrac{1}{\tan\theta} \end{align*}
- Quotient Identities (Definition 1.4.3)\begin{align*} \tan\theta \amp =\dfrac{\sin\theta}{\cos\theta} \amp \cot\theta\amp =\dfrac{\cos\theta}{\sin\theta} \end{align*}
- Pythagorean Identities (Definition 1.5.20)\begin{align*} \sin^2\theta+\cos^2\theta \amp = 1 \\ 1+\tan^2\theta \amp = \sec^2\theta\\ 1+\cot^2\theta \amp = \csc^2\theta \end{align*}
-
Odd-Even Identities (Definition 1.5.22)The cosine and secant functions are even\begin{align*} \cos(-\theta)\amp =\cos\theta \amp \sec(-\theta)\amp =\sec\theta \end{align*}The sine, cosecant, tangent, and cotangent functions are odd\begin{align*} \sin(-\theta)\amp =-\sin\theta \amp \csc(-\theta)\amp =-\csc(\theta)\\ \tan(-\theta)\amp =-\tan\theta \amp \cot(-\theta)\amp =-\cot(\theta) \end{align*}
- Cofunction Identities (Definition 1.4.7)\begin{align*} \sin\theta\amp =\cos\left(\frac{\pi}{2}-\theta\right), \amp \cos\theta\amp =\sin\left(\frac{\pi}{2}-\theta\right)\\ \tan\theta\amp =\cot\left(\frac{\pi}{2}-\theta\right), \amp \cot\theta\amp =\tan\left(\frac{\pi}{2}-\theta\right)\\ \sec\theta\amp =\csc\left(\frac{\pi}{2}-\theta\right), \amp \csc\theta\amp =\sec\left(\frac{\pi}{2}-\theta\right) \end{align*}