Example 3.6.1.
Solve \(2\sin^2x+3\cos x-3=0\text{.}\)
Solution.
To solve the equation \(2\sin^2x + 3\cos x - 3 = 0\text{,}\) we want to first write it in terms of only cosine or only sine. By the Pythagorean Identity, we substitute \(\sin^2x=1-\cos^2x\text{,}\) resulting in:
\begin{align*}
2\sin^2x+3\cos x-3 \amp =0 \\
2(1-\cos^2x)+3\cos x-3 \amp =0 \\
2-2\cos^2x+3\cos x-3 \amp =0 \\
-2\cos^2x+3\cos x-1 \amp =0 \\
2\cos^2x-3\cos x+1 \amp =0 \\
(2\cos x-1)(\cos x-1) \amp =0
\end{align*}
Thus \(\cos x=\frac{1}{2}\) or \(\cos x=1\text{.}\)
Solving for \(x\) in the first equation gives \(x=\frac{\pi}{3}\) or \(\frac{5\pi}{3}\text{,}\) while the second equations gives \(x=0\) for one period. Finding all solutions, we arrive at \(x=\frac{\pi}{3}+2k\pi\text{,}\) \(\frac{5\pi}{3}+2k\pi\text{,}\) or \(x=0+2k\pi=2k\pi\) for any integer \(k\text{.}\)